Normal forms on contracting foliations: smoothness and homogeneous structure

被引:0
|
作者
Boris Kalinin
Victoria Sadovskaya
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
Geometriae Dedicata | 2016年 / 183卷
关键词
Normal form; Contracting foliation; Narrow band spectrum; Polynomial map; Homogeneous structure; 37D30; 37D10; 34C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a diffeomorphism f of a compact manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} which contracts an invariant foliation W with smooth leaves. If the differential of f on TW has narrow band spectrum, there exist coordinates Hx:Wx→TxW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x:W_x\rightarrow T_xW$$\end{document} in which f|W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f|_W$$\end{document} has polynomial form. We present a modified approach that allows us to construct maps Hx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_x$$\end{document} that depend smoothly on x along the leaves of W. Moreover, we show that on each leaf they give a coherent atlas with transition maps in a finite dimensional Lie group. Our results apply, in particular, to C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-small perturbations of algebraic systems.
引用
收藏
页码:181 / 194
页数:13
相关论文
共 50 条
  • [21] TOPOLOGICAL EQUIVALENCE OF FOLIATIONS OF HOMOGENEOUS SPACES
    WITTE, D
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 317 (01) : 143 - 166
  • [22] RIEMANNIAN HOMOGENEOUS FOLIATIONS WITHOUT HOLONOMY
    BLUMENTHAL, RA
    NAGOYA MATHEMATICAL JOURNAL, 1981, 83 (OCT) : 197 - 201
  • [23] On first order deformations of homogeneous foliations
    Molinuevo, Ariel
    Scardua, Bruno
    BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 163
  • [24] Codimension one foliations on homogeneous varieties
    Benedetti, Vladimiro
    Faenzi, Daniele
    Muniz, Alan
    ADVANCES IN MATHEMATICS, 2023, 434
  • [25] The Dunkl-Williams constant, convexity, smoothness and normal structure
    Jimenez-Melado, A.
    Llorens-Fuster, E.
    Mazcunan-Navarro, E. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 298 - 310
  • [26] UNIFORM SMOOTHNESS IMPLIES SUPER-NORMAL STRUCTURE PROPERTY
    KHAMSI, MA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (11) : 1063 - 1069
  • [27] Quasi-homogeneous normal forms for null linear part
    Algaba, A
    Freire, E
    Gamero, E
    García, C
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 247 - 261
  • [28] Reversibility and quasi-homogeneous normal forms of vector fields
    Algaba, A.
    Garcia, C.
    Teixeira, M. A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) : 510 - 525
  • [29] Smoothness of Hessenberg and Bidiagonal Forms
    Luca Dieci
    M. Grazia Gasparo
    Alessandra Papini
    Mediterranean Journal of Mathematics, 2008, 5 : 21 - 31
  • [30] Smoothness of Hessenberg and bidiagonal forms
    Dieci, Luca
    Gasparo, M. Grazia
    Papini, Alessandra
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2008, 5 (01) : 21 - 31