Minimizing symmetric submodular functions

被引:0
|
作者
Maurice Queyranne
机构
[1] The University of British Columbia,Faculty of Commerce and Business Administration
来源
Mathematical Programming | 1998年 / 82卷
关键词
Symmetric submodular function minimization; Submodular function minimization; Symmetric submodular functions; Submodular functions; Submodular systems;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a purely combinatorial algorithm which, given a submodular set functionf on a finite setV, finds a nontrivial subsetA ofV minimizingf[A] + f[V ∖ A]. This algorithm, an extension of the Nagamochi—Ibaraki minimum cut algorithm as simplified by Stoer and Wagner [M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147] and by Frank [A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenbole, 1994], minimizes any symmetric submodular function using O(|V|3) calls to a function value oracle. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:3 / 12
页数:9
相关论文
共 50 条
  • [41] Minimizing a submodular function arising from a concave function
    Fujishige, S
    Iwata, S
    DISCRETE APPLIED MATHEMATICS, 1999, 92 (2-3) : 211 - 215
  • [42] Quotient sparsification for submodular functions
    Quanrud, Kent
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 5209 - 5248
  • [43] Submodular Functions and Rooted Trees
    Yaokun Wu
    Yinfeng Zhu
    Theory of Computing Systems, 2022, 66 : 1047 - 1073
  • [44] Submodular Functions and Perfect Graphs
    Abrishami, Tara
    Chudnovsky, Maria
    Dibek, Cemil
    Vuskovic, Kristina
    MATHEMATICS OF OPERATIONS RESEARCH, 2025, 50 (01)
  • [45] Submodular Functions and Rooted Trees
    Wu, Yaokun
    Zhu, Yinfeng
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (06) : 1047 - 1073
  • [46] SUBMODULAR FUNCTIONS AND INDEPENDENCE STRUCTURES
    PYM, JS
    PERFECT, HAZ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1970, 30 (01) : 1 - &
  • [47] Concave Aspects of Submodular Functions
    Iyer, Rishabh
    Bilmes, Jeff
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 72 - 77
  • [48] Maximization of Approximately Submodular Functions
    Horel, Thibaut
    Singer, Yaron
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [49] Choquet representability of submodular functions
    Alain Chateauneuf
    Bernard Cornet
    Mathematical Programming, 2018, 168 : 615 - 629
  • [50] Sparsification of Decomposable Submodular Functions
    Rafiey, Akbar
    Yoshida, Yuichi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10336 - 10344