Minimizing symmetric submodular functions

被引:0
|
作者
Maurice Queyranne
机构
[1] The University of British Columbia,Faculty of Commerce and Business Administration
来源
Mathematical Programming | 1998年 / 82卷
关键词
Symmetric submodular function minimization; Submodular function minimization; Symmetric submodular functions; Submodular functions; Submodular systems;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a purely combinatorial algorithm which, given a submodular set functionf on a finite setV, finds a nontrivial subsetA ofV minimizingf[A] + f[V ∖ A]. This algorithm, an extension of the Nagamochi—Ibaraki minimum cut algorithm as simplified by Stoer and Wagner [M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147] and by Frank [A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenbole, 1994], minimizes any symmetric submodular function using O(|V|3) calls to a function value oracle. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:3 / 12
页数:9
相关论文
共 50 条
  • [31] Submodular partition functions
    Amini, Omid
    Mazoit, Frederic
    Nisse, Nicolas
    Thomasse, Stephan
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6000 - 6008
  • [32] Submodular functions and optimization
    Fujishige, S.
    Frank, A.
    ZOR. Zeitschrift Fuer Operations Research, 1994, 40 (03):
  • [33] Streaming algorithms for maximizing the difference of submodular functions and the sum of submodular and supermodular functions
    Cheng Lu
    Wenguo Yang
    Suixiang Gao
    Optimization Letters, 2023, 17 : 1643 - 1667
  • [34] Hom functions and submodular Boolean functions
    Ekin, O
    Hammer, PL
    Peled, UN
    THEORETICAL COMPUTER SCIENCE, 1997, 175 (02) : 257 - 270
  • [35] CANONICAL DECOMPOSITIONS OF SYMMETRIC SUBMODULAR SYSTEMS
    FUJISHIGE, S
    DISCRETE APPLIED MATHEMATICS, 1983, 5 (02) : 175 - 190
  • [36] On symmetric functions and symmetric functions of symmetric functions
    O'Toole, AL
    ANNALS OF MATHEMATICAL STATISTICS, 1931, 2 : 103 - 149
  • [37] Choquet representability of submodular functions
    Chateauneuf, Alain
    Cornet, Bernard
    MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 615 - 629
  • [38] Ranking with submodular functions on a budget
    Zhang, Guangyi
    Tatti, Nikolaj
    Gionis, Aristides
    DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (03) : 1197 - 1218
  • [39] Submodular Functions: Optimization and Approximation
    Iwata, Satoru
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2943 - 2963
  • [40] Metric learning with submodular functions
    Pan, Jiajun
    Le Capitaine, Hoel
    NEUROCOMPUTING, 2020, 416 : 328 - 339