Minimizing symmetric submodular functions

被引:0
|
作者
Maurice Queyranne
机构
[1] The University of British Columbia,Faculty of Commerce and Business Administration
来源
Mathematical Programming | 1998年 / 82卷
关键词
Symmetric submodular function minimization; Submodular function minimization; Symmetric submodular functions; Submodular functions; Submodular systems;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a purely combinatorial algorithm which, given a submodular set functionf on a finite setV, finds a nontrivial subsetA ofV minimizingf[A] + f[V ∖ A]. This algorithm, an extension of the Nagamochi—Ibaraki minimum cut algorithm as simplified by Stoer and Wagner [M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Symposium on Algorithms ESA '94, LNCS 855, Springer, Berlin, 1994, pp. 141–147] and by Frank [A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire Artémis, IMAG, Université J. Fourier, Grenbole, 1994], minimizes any symmetric submodular function using O(|V|3) calls to a function value oracle. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:3 / 12
页数:9
相关论文
共 50 条
  • [1] Minimizing symmetric submodular functions
    Queyranne, M
    MATHEMATICAL PROGRAMMING, 1998, 82 (1-2) : 3 - 12
  • [2] Minimizing a sum of submodular functions
    Kolmogorov, Vladimir
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2246 - 2258
  • [3] A note on minimizing submodular functions
    Nagamochi, H
    Ibaraki, T
    INFORMATION PROCESSING LETTERS, 1998, 67 (05) : 239 - 244
  • [4] Maximizing Symmetric Submodular Functions
    Feldman, Moran
    ALGORITHMS - ESA 2015, 2015, 9294 : 521 - 532
  • [5] Maximizing Symmetric Submodular Functions
    Feldman, Moran
    ACM TRANSACTIONS ON ALGORITHMS, 2017, 13 (03)
  • [6] A faster scaling algorithm for minimizing submodular functions
    Iwata, S
    SIAM JOURNAL ON COMPUTING, 2003, 32 (04) : 833 - 840
  • [7] MINIMIZING SUBMODULAR FUNCTIONS OVER FAMILIES OF SETS
    GOEMANS, MX
    RAMAKRISHNAN, VS
    COMBINATORICA, 1995, 15 (04) : 499 - 513
  • [8] Minimizing Ratio of Monotone Non-submodular Functions
    Wang, Yi-Jing
    Xu, Da-Chuan
    Jiang, Yan-Jun
    Zhang, Dong-Mei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2019, 7 (03) : 449 - 459
  • [9] On the monotonicity of games generated by symmetric submodular functions
    Fomin, FV
    Thilikos, DM
    DISCRETE APPLIED MATHEMATICS, 2003, 131 (02) : 323 - 335
  • [10] Minimizing Ratio of Monotone Non-submodular Functions
    Yi-Jing Wang
    Da-Chuan Xu
    Yan-Jun Jiang
    Dong-Mei Zhang
    Journal of the Operations Research Society of China, 2019, 7 : 449 - 459