Clifford algebras of hyperbolic involutions

被引:0
|
作者
R. Skip Garibaldi
机构
[1] UCLA,
[2] Department of Mathematics,undefined
[3] Los Angeles,undefined
[4] California 90095-1555,undefined
[5] USA (e-mail: skip@member.ams.org) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 236卷
关键词
Clifford Algebra; Simple Algebra; Interesting Part; Central Simple Algebra; Exterior Power;
D O I
暂无
中图分类号
学科分类号
摘要
For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\As$\end{document} a central simple algebra of even degree with hyperbolic orthogonal involution, we describe the canonically induced involution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma}$\end{document} on the even Clifford algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(C_0(A,\sigma),{\underline \sigma})$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(A,\sigma)$\end{document}. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\deg A \equiv 0 \mod{8}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A \cong M_2(B)$\end{document} and the interesting part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma} $\end{document} is isomorphic to the canonical involution on an exterior power algebra of B. As a corollary, we get some properties of the involution on the exterior power algebra.
引用
收藏
页码:321 / 349
页数:28
相关论文
共 50 条
  • [31] EXISTENCE OF INVOLUTIONS ON SIMPLE ALGEBRAS
    SCHARLAU, W
    MATHEMATISCHE ZEITSCHRIFT, 1975, 145 (01) : 29 - 32
  • [32] CLASSIFICATION OF INVOLUTIONS ON INCIDENCE ALGEBRAS
    Brusamarello, Rosali
    Fornaroli, Erica Z.
    Santulo, Ednei A., Jr.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (06) : 1941 - 1955
  • [33] Generalizing Classical Clifford Algebras, Graded Clifford Algebras and their Associated Geometry
    Michaela Vancliff
    Advances in Applied Clifford Algebras, 2021, 31
  • [34] Identities with involutions on incidence algebras
    Lemes, Ewerton da Silva
    Santulo Jr, Ednei Aparecido
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) : 3873 - 3903
  • [35] ALGEBRAS ALMOST COMMUTING WITH CLIFFORD ALGEBRAS
    CAREY, AL
    EVANS, DE
    JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) : 279 - 298
  • [36] Asymptotic Hecke algebras and involutions
    Lusztig, G.
    PERSPECTIVES IN REPRESENTATION THEORY: A CONFERENCE IN HONOR OF IGOR FRENKEL'S 60TH BIRTHDAY ON PERSPECTIVES IN REPRESENTATION THEORY, 2014, 610 : 267 - 278
  • [37] Involutions of semisimple group algebras
    Boulagouaz, M
    Oukhtite, L
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 133 - 149
  • [38] Involutions on graded matrix algebras
    Bahturin, Yuri
    Zalcev, Mikhail
    JOURNAL OF ALGEBRA, 2007, 315 (02) : 527 - 540
  • [39] Extending involutions on Frobenius algebras
    Chuard-Koulmann, P
    Morales, J
    MANUSCRIPTA MATHEMATICA, 2002, 108 (04) : 439 - 451
  • [40] Clifford algebras as projections of group algebras
    Chernov, VM
    GEOMETRIC ALGEBRA WITH APPLICATIONS IN SCIENCE AND ENGINEERING, 2001, : 461 - +