Clifford algebras of hyperbolic involutions

被引:0
|
作者
R. Skip Garibaldi
机构
[1] UCLA,
[2] Department of Mathematics,undefined
[3] Los Angeles,undefined
[4] California 90095-1555,undefined
[5] USA (e-mail: skip@member.ams.org) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 236卷
关键词
Clifford Algebra; Simple Algebra; Interesting Part; Central Simple Algebra; Exterior Power;
D O I
暂无
中图分类号
学科分类号
摘要
For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\As$\end{document} a central simple algebra of even degree with hyperbolic orthogonal involution, we describe the canonically induced involution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma}$\end{document} on the even Clifford algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(C_0(A,\sigma),{\underline \sigma})$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(A,\sigma)$\end{document}. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\deg A \equiv 0 \mod{8}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A \cong M_2(B)$\end{document} and the interesting part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma} $\end{document} is isomorphic to the canonical involution on an exterior power algebra of B. As a corollary, we get some properties of the involution on the exterior power algebra.
引用
收藏
页码:321 / 349
页数:28
相关论文
共 50 条
  • [11] Involutions of a Clifford Algebra Induced by Involutions of Orthogonal Group in Characteristic 2
    Mahmoudi, M. G.
    Nokhodkar, A. -H.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) : 3898 - 3919
  • [12] Clifford bundles and clifford algebras
    Branson, T
    LECTURES ON CLIFFORD (GEOMETRIC) ALGEBRAS AND APPLICATIONS, 2004, : 157 - 188
  • [13] Involutions in incidence algebras
    Spiegel, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 : 155 - 162
  • [14] INVOLUTIONS OF AZUMAYA ALGEBRAS
    First, Uriya A.
    Williams, Ben
    DOCUMENTA MATHEMATICA, 2020, 25 : 527 - 633
  • [15] CARTAN ALGEBRAS AND INVOLUTIONS
    SPINDLER, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) : 323 - 333
  • [16] AZUMAYA ALGEBRAS WITH INVOLUTIONS
    KNUS, MA
    PARIMALA, R
    SRINIVAS, V
    JOURNAL OF ALGEBRA, 1990, 130 (01) : 65 - 82
  • [17] Involutions on composition algebras
    Pumplün, S
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2003, 14 (02): : 241 - 248
  • [18] ON CLIFFORD ALGEBRAS
    VANDERWA.BL
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1966, 69 (02): : 78 - &
  • [19] INVOLUTIONS OF JORDAN ALGEBRAS
    HELWIG, KH
    MANUSCRIPTA MATHEMATICA, 1969, 1 (03) : 211 - &
  • [20] Involutions on universal algebras
    Heatherly, HE
    Lee, EKS
    Wiegandt, R
    NEARRINGS, NEARFIELDS, AND K-LOOPS, 1997, 426 : 269 - 282