Clifford algebras of hyperbolic involutions

被引:0
|
作者
R. Skip Garibaldi
机构
[1] UCLA,
[2] Department of Mathematics,undefined
[3] Los Angeles,undefined
[4] California 90095-1555,undefined
[5] USA (e-mail: skip@member.ams.org) ,undefined
来源
Mathematische Zeitschrift | 2001年 / 236卷
关键词
Clifford Algebra; Simple Algebra; Interesting Part; Central Simple Algebra; Exterior Power;
D O I
暂无
中图分类号
学科分类号
摘要
For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\As$\end{document} a central simple algebra of even degree with hyperbolic orthogonal involution, we describe the canonically induced involution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma}$\end{document} on the even Clifford algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(C_0(A,\sigma),{\underline \sigma})$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $(A,\sigma)$\end{document}. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\deg A \equiv 0 \mod{8}$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A \cong M_2(B)$\end{document} and the interesting part of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\underline \sigma} $\end{document} is isomorphic to the canonical involution on an exterior power algebra of B. As a corollary, we get some properties of the involution on the exterior power algebra.
引用
收藏
页码:321 / 349
页数:28
相关论文
共 50 条