We briefly survey our recent results about the Mumford goodness of several canonical metrics on the moduli spaces of Riemann surfaces, including the Weil-Petersson metric, the Ricci metric, the Perturbed Ricci metric and the Kahler-Einstein metric. We prove the dual Nakano negativity of the Weil-Petersson metric. As applications of these results we deduce certain important results about the L2-cohomology groups of the logarithmic tangent bundle over the compactified moduli spaces.