We briefly survey our recent results about the Mumford goodness of several canonical metrics on the moduli spaces of Riemann surfaces, including the Weil-Petersson metric, the Ricci metric, the Perturbed Ricci metric and the Kahler-Einstein metric. We prove the dual Nakano negativity of the Weil-Petersson metric. As applications of these results we deduce certain important results about the L2-cohomology groups of the logarithmic tangent bundle over the compactified moduli spaces.
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USAZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
Liu, Kefeng
Sun, Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Lehigh Univ, Dept Math, Bethlehem, PA 18015 USAZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
Sun, Xiaofeng
Yau, Shing-Tung
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Math, Cambridge, MA 02138 USAZhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
机构:
UNED, Fac Ciencias, Dept Matemat Fundament, Senda del Rey 9, Madrid 28040, SpainUNED, Fac Ciencias, Dept Matemat Fundament, Senda del Rey 9, Madrid 28040, Spain
Costa, Antonio F.
Porto, Ana M.
论文数: 0引用数: 0
h-index: 0
机构:
UNED, Fac Ciencias, Dept Matemat Fundament, Senda del Rey 9, Madrid 28040, SpainUNED, Fac Ciencias, Dept Matemat Fundament, Senda del Rey 9, Madrid 28040, Spain