Chromosome drives via CRISPR-Cas9 in yeast

被引:0
|
作者
Hui Xu
Mingzhe Han
Shiyi Zhou
Bing-Zhi Li
Yi Wu
Ying-Jin Yuan
机构
[1] Tianjin University,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology
[2] Tianjin University,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Self-propagating drive systems are capable of causing non-Mendelian inheritance. Here, we report a drive system in yeast referred to as a chromosome drive that eliminates the target chromosome via CRISPR-Cas9, enabling the transmission of the desired chromosome. Our results show that the entire Saccharomyces cerevisiae chromosome can be eliminated efficiently through only one double-strand break around the centromere via CRISPR-Cas9. As a proof-of-concept experiment of this CRISPR-Cas9 chromosome drive system, the synthetic yeast chromosome X is completely eliminated, and the counterpart wild-type chromosome X harboring a green fluorescent protein gene or the components of a synthetic violacein pathway are duplicated by sexual reproduction. We also demonstrate the use of chromosome drive to preferentially transmit complex genetic traits in yeast. Chromosome drive enables entire chromosome elimination and biased inheritance on a chromosomal scale, facilitating genomic engineering and chromosome-scale genetic mapping, and extending applications of self-propagating drives.
引用
收藏
相关论文
共 50 条
  • [41] Advances in therapeutic application of CRISPR-Cas9
    Sun, Jinyu
    Wang, Jianchu
    Zheng, Donghui
    Hu, Xiaorong
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (03) : 164 - 174
  • [42] Construction of Vectors for the Genome Editing of Saccharomyces Yeast Using CRISPR-Cas9 System
    A. G. Matveenko
    A. S. Mikhailichenko
    G. A. Zhouravleva
    Microbiology, 2024, 93 : 154 - 159
  • [43] CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis
    Lombardi, Lisa
    Bergin, Sean A. A.
    Ryan, Adam
    Zuniga-Soto, Evelyn
    Butler, Geraldine
    MSPHERE, 2022, 7 (06)
  • [44] The CRISPR-Cas9 system in Neisseria spp
    Zhang, Yan
    PATHOGENS AND DISEASE, 2017, 75 (04):
  • [45] Principles of DNA cleavage in CRISPR-Cas9
    Ahsan, Mohammad
    Nierzwicki, Qukasz
    East, Kyle W.
    Binz, Jonas
    Hsu, Rohaine V.
    Arantes, Pablo R.
    Skeens, Erin
    Pacesa, Martin
    Jinek, Martin
    Lisi, George P.
    Palermo, Giulia
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 170A - 170A
  • [46] CRISPR-Cas9 System: Opportunities and Concerns
    Vasiliou, Stella K.
    Diamandis, Eleftherios P.
    Church, George M.
    Greely, Henry T.
    Baylis, Francoise
    Thompson, Charis
    Schmitt-Ulms, Gerold
    CLINICAL CHEMISTRY, 2016, 62 (10) : 1304 - 1311
  • [47] Secondary Conformational Checkpoint in CRISPR-Cas9
    Zhao, Shuxin
    Liu, Jin
    Zuo, Zhicheng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (09) : 3440 - 3448
  • [48] Who owns CRISPR-Cas9 in Europe?
    András Kupecz
    Nature Biotechnology, 2014, 32 : 1194 - 1196
  • [49] Chemistry Nobel Honors CRISPR-Cas9
    You Li-Lan
    Sun Wei
    Yang Xiao-Qi
    Wang Yan-Li
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2020, 47 (11) : 1119 - 1126
  • [50] Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system
    Ludovic Enkler
    Delphine Richer
    Anthony L. Marchand
    Dominique Ferrandon
    Fabrice Jossinet
    Scientific Reports, 6