Implicit parameter estimation for conditional Gaussian Bayesian networks

被引:0
|
作者
Aida Jarraya
Philippe Leray
Afif Masmoudi
机构
[1] Sfax University,Laboratory of Probability and Statistics, Faculty of Sciences of Sfax
[2] University of Nantes,LINA Computer Science Lab UMR 6241, Knowledge and Decision Team
关键词
Conditional Gaussian Bayesian networks; Bayesian estimation; Implicit estimation; Parameter learning;
D O I
暂无
中图分类号
学科分类号
摘要
The Bayesian estimation of the conditional Gaussian parameter needs to define several a priori parameters. The proposed approach is free from this definition of priors. We use the Implicit estimation method for learning from observations without a prior knowledge. We illustrate the interest of such an estimation method by giving first the Bayesian Expectation A Posteriori estimator for conditional Gaussian parameters. Then, we describe the Implicit estimators for the same parameters. Moreover, an experimental study is proposed in order to compare both approaches.
引用
收藏
页码:6 / 17
页数:11
相关论文
共 50 条
  • [41] Objective Bound Conditional Gaussian Process for Bayesian Optimization
    Jeong, Taewon
    Kim, Heeyoung
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [42] BAYESIAN PARAMETER-ESTIMATION
    KRAMER, SC
    SORENSON, HW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (02) : 217 - 222
  • [43] BAYESIAN ESTIMATION FOR THE MULTIFRACTALITY PARAMETER
    Wendt, Herwig
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Abry, Patrice
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6556 - 6560
  • [44] Conditional Independence in Testing Bayesian Networks
    Shen, Yujia
    Huang, Haiying
    Choi, Arthur
    Darwiche, Adnan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [45] Conditional Bayesian Networks for Action Detection
    Khan, Furgan M.
    Lee, Sung Chun
    Nevatia, Ram
    [J]. 2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), 2013, : 256 - 262
  • [46] On conditional truncated densities Bayesian networks
    [J]. Gonzales, Christophe (Christophe.Gonzales@lip6.fr), 1600, Elsevier Inc. (92):
  • [47] Conditional plausibility measures and Bayesian networks
    Halpern, JY
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2001, 14 : 359 - 389
  • [48] On conditional truncated densities Bayesian networks
    Cortijo, Santiago
    Gonzales, Christophe
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 92 : 155 - 174
  • [49] Parameter estimation in conditional heteroscedastic models
    Chatterjee, S
    Das, S
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (06) : 1135 - 1153
  • [50] Distributed Parameter Estimation for Univariate Generalized Gaussian Distribution over Sensor Networks
    Chen Liang
    Fuxi Wen
    Zhongmin Wang
    [J]. Circuits, Systems, and Signal Processing, 2017, 36 : 1311 - 1321