Implicit parameter estimation for conditional Gaussian Bayesian networks

被引:0
|
作者
Aida Jarraya
Philippe Leray
Afif Masmoudi
机构
[1] Sfax University,Laboratory of Probability and Statistics, Faculty of Sciences of Sfax
[2] University of Nantes,LINA Computer Science Lab UMR 6241, Knowledge and Decision Team
关键词
Conditional Gaussian Bayesian networks; Bayesian estimation; Implicit estimation; Parameter learning;
D O I
暂无
中图分类号
学科分类号
摘要
The Bayesian estimation of the conditional Gaussian parameter needs to define several a priori parameters. The proposed approach is free from this definition of priors. We use the Implicit estimation method for learning from observations without a prior knowledge. We illustrate the interest of such an estimation method by giving first the Bayesian Expectation A Posteriori estimator for conditional Gaussian parameters. Then, we describe the Implicit estimators for the same parameters. Moreover, an experimental study is proposed in order to compare both approaches.
引用
收藏
页码:6 / 17
页数:11
相关论文
共 50 条
  • [31] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    Ramos-Lopez, Dario
    Masegosa, Andres R.
    Salmeron, Antonio
    Rumi, Rafael
    Langseth, Helge
    Nielsen, Thomas D.
    Madsen, Anders L.
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 100 : 115 - 134
  • [32] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    [J]. Ramos-López, Darío (dramoslopez@ual.es), 1600, Elsevier Inc. (100):
  • [33] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Gabbard, Hunter
    Messenger, Chris
    Heng, Ik Siong
    Tonolini, Francesco
    Murray-Smith, Roderick
    [J]. NATURE PHYSICS, 2022, 18 (01) : 112 - +
  • [34] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Hunter Gabbard
    Chris Messenger
    Ik Siong Heng
    Francesco Tonolini
    Roderick Murray-Smith
    [J]. Nature Physics, 2022, 18 : 112 - 117
  • [35] Gaussian Process Conditional Density Estimation
    Dutordoir, Vincent
    Salimbeni, Hugh
    Deisenroth, Marc Peter
    Hensman, James
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [36] Computation of the posterior entropy in a Bayesian framework for parameter estimation in biological networks
    Kramer, Andrei
    Hasenauer, Jan
    Allgoewer, Frank
    Radde, Nicole
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 493 - 498
  • [37] Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
    Everitt, Richard G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (04) : 940 - 960
  • [38] ADAPTIVE BAYESIAN ESTIMATION OF CONDITIONAL DENSITIES
    Norets, Andriy
    Pati, Debdeep
    [J]. ECONOMETRIC THEORY, 2017, 33 (04) : 980 - 1012
  • [39] Bayesian Parameter Estimation in LDA
    Liu, Z. Y.
    Wang, W. P.
    Wang, Y.
    Lu, W. Y.
    Ji, Z. Z.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 837 - 840
  • [40] BAYESIAN ESTIMATION OF BINOMIAL PARAMETER
    DRAPER, N
    GUTTMAN, I
    [J]. TECHNOMETRICS, 1971, 13 (03) : 667 - &