A hybrid algorithm for solving the absolute value equation

被引:0
|
作者
Olvi L. Mangasarian
机构
[1] University of Wisconsin,Computer Sciences Department
[2] University of California at San Diego,Department of Mathematics
来源
Optimization Letters | 2015年 / 9卷
关键词
Absolute value equation; Concave minimization; Linear programming; Linear equations;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax-|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-|x|=b$$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=$$\end{document} 50, 100, 200, 500 and 1000. The algorithm solved 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\%$$\end{document} of the test problems to an accuracy of 10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-8}$$\end{document} by solving an average of 2.77 systems of linear equations and linear programs per AVE.
引用
收藏
页码:1469 / 1474
页数:5
相关论文
共 50 条
  • [41] On the Unique Solvability of the Absolute Value Equation
    Wu, Shi-Liang
    Guo, Peng
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 169 (02) : 705 - 712
  • [42] On unique solvability of the absolute value equation
    Jiri Rohn
    Optimization Letters, 2009, 3 : 603 - 606
  • [43] An application of generalized absolute value equation
    Cui-Xia Li
    Shi-Liang Wu
    Journal of Nonlinear Mathematical Physics, 32 (1)
  • [44] On the Unique Solvability of the Absolute Value Equation
    Shi-Liang Wu
    Peng Guo
    Journal of Optimization Theory and Applications, 2016, 169 : 705 - 712
  • [45] Some techniques for solving absolute value equations
    Moosaei, H.
    Ketabchi, S.
    Noor, M. A.
    Iqbal, J.
    Hooshyarbakhsh, V.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 696 - 705
  • [46] On an iterative method for solving absolute value equations
    Noor, Muhammad Aslam
    Iqbal, Javed
    Noor, Khalida Inayat
    Al-Said, Eisa
    OPTIMIZATION LETTERS, 2012, 6 (05) : 1027 - 1033
  • [47] On an iterative method for solving absolute value equations
    Muhammad Aslam Noor
    Javed Iqbal
    Khalida Inayat Noor
    Eisa Al-Said
    Optimization Letters, 2012, 6 : 1027 - 1033
  • [48] Iterative methods for solving absolute value equations
    Ali, Rashid
    Ali, Asad
    Iqbal, Shahid
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 26 (04): : 322 - 329
  • [49] Improved Glowworm Swarm Optimization Algorithm Based on a Sigmoid Function for the Absolute Value Equation
    Wang, Feiran
    Chen, Chen
    Chen, Kai
    Shen, Liang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [50] A NON-MONOTONE SMOOTHING NEWTON ALGORITHM FOR SOLVING THE SYSTEM OF GENERALIZED ABSOLUTE VALUE EQUATIONS
    Chen, Cairong
    Yu, Dongmei
    Han, Deren
    Ma, Changfeng
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (02): : 438 - 460