A hybrid algorithm for solving the absolute value equation

被引:0
|
作者
Olvi L. Mangasarian
机构
[1] University of Wisconsin,Computer Sciences Department
[2] University of California at San Diego,Department of Mathematics
来源
Optimization Letters | 2015年 / 9卷
关键词
Absolute value equation; Concave minimization; Linear programming; Linear equations;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax-|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-|x|=b$$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=$$\end{document} 50, 100, 200, 500 and 1000. The algorithm solved 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\%$$\end{document} of the test problems to an accuracy of 10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-8}$$\end{document} by solving an average of 2.77 systems of linear equations and linear programs per AVE.
引用
收藏
页码:1469 / 1474
页数:5
相关论文
共 50 条
  • [31] A new three-term spectral subgradient method for solving absolute value equation
    Rahpeymaii, Farzad
    Amini, Keyvan
    Rostamy-Malkhalifeh, Mohsen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (02) : 440 - 452
  • [32] Preconditioned inexact fixed point iteration method for solving tensor absolute value equation
    Lv, Xin-Mei
    Miao, Shu-Xin
    NUMERICAL ALGORITHMS, 2024,
  • [33] A new inexact fixed point iteration method for solving tensor absolute value equation
    Lv, Xin-Mei
    Miao, Shu-Xin
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [34] Solving Nonlinear Absolute Value Equations
    Daniilidis, Aris
    Haddou, Mounir
    Lê, Trí Minh
    Ley, Olivier
    arXiv,
  • [35] Momentum acceleration-based matrix splitting method for solving generalized absolute value equation
    Jia-Lin Zhang
    Guo-Feng Zhang
    Zhao-Zheng Liang
    Li-Dan Liao
    Computational and Applied Mathematics, 2023, 42
  • [36] Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation
    Dehghan, Mehdi
    Shirilord, Akbar
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 : 425 - 438
  • [37] Momentum acceleration-based matrix splitting method for solving generalized absolute value equation
    Zhang, Jia-Lin
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    Liao, Li-Dan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (07):
  • [38] An algorithm for solving the pulsar equation
    Bratek, Lukasz
    Kolonko, Marcin
    ASTROPHYSICS AND SPACE SCIENCE, 2007, 309 (1-4) : 231 - 234
  • [39] An algorithm for solving the pulsar equation
    Łukasz Bratek
    Marcin Kolonko
    Astrophysics and Space Science, 2007, 309 : 231 - 234
  • [40] On unique solvability of the absolute value equation
    Rohn, Jiri
    OPTIMIZATION LETTERS, 2009, 3 (04) : 603 - 606