A hybrid algorithm for solving the absolute value equation

被引:0
|
作者
Olvi L. Mangasarian
机构
[1] University of Wisconsin,Computer Sciences Department
[2] University of California at San Diego,Department of Mathematics
来源
Optimization Letters | 2015年 / 9卷
关键词
Absolute value equation; Concave minimization; Linear programming; Linear equations;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybrid algorithm for solving the NP-hard absolute value equation (AVE): Ax-|x|=b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax-|x|=b$$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} square matrix. The algorithm makes no assumptions on the AVE other than solvability and consists of solving iteratively a linear system of equations followed by a linear program. The algorithm was tested on 100 consecutively generated random solvable instances of the AVE with n=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=$$\end{document} 50, 100, 200, 500 and 1000. The algorithm solved 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\,\%$$\end{document} of the test problems to an accuracy of 10-8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-8}$$\end{document} by solving an average of 2.77 systems of linear equations and linear programs per AVE.
引用
收藏
页码:1469 / 1474
页数:5
相关论文
共 50 条
  • [1] A hybrid algorithm for solving the absolute value equation
    Mangasarian, Olvi L.
    OPTIMIZATION LETTERS, 2015, 9 (07) : 1469 - 1474
  • [2] AN ALGORITHM FOR SOLVING THE ABSOLUTE VALUE EQUATION
    Rohn, Jiri
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 589 - 599
  • [3] Solving tensor absolute value equation
    Jiang, Zhuling
    Li, Jicheng
    APPLIED NUMERICAL MATHEMATICS, 2021, 170 : 255 - 268
  • [4] THE PROXIMAL METHODS FOR SOLVING ABSOLUTE VALUE EQUATION
    Shahsavari, Samira
    Ketabchi, Saeed
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2021, 11 (03): : 449 - 460
  • [5] An Efficient Algorithm for Solving Absolute Value Equations
    Fakharzadeh, A. J.
    Shams, N. N.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (03)
  • [6] The new iteration algorithm for absolute value equation
    Ke, Yifen
    APPLIED MATHEMATICS LETTERS, 2020, 99
  • [7] The tensor splitting methods for solving tensor absolute value equation
    Bu, Fan
    Ma, Chang-Feng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [8] Solving absolute value equation using complementarity and smoothing functions
    Abdallah, L.
    Haddou, M.
    Migot, T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 327 : 196 - 207
  • [9] Efficient Splitting Methods for Solving Tensor Absolute Value Equation
    Ning, Jing
    Xie, Yajun
    Yao, Jie
    SYMMETRY-BASEL, 2022, 14 (02):
  • [10] The tensor splitting methods for solving tensor absolute value equation
    Fan Bu
    Chang-Feng Ma
    Computational and Applied Mathematics, 2020, 39