The interior proximal extragradient method for solving equilibrium problems

被引:0
|
作者
Thi Thu Van Nguyen
Jean-Jacques Strodiot
Van Hien Nguyen
机构
[1] University of Namur (FUNDP),Department of Mathematics
[2] University of Natural Sciences,Faculty of Mathematics and Informatics
[3] Vietnam National University,undefined
来源
关键词
Interior proximal method; Logarithmic-quadratic proximal method; Extragradient method; Armijo-backtracking linesearch; Equilibrium problems;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we present a new and efficient method for solving equilibrium problems on polyhedra. The method is based on an interior-quadratic proximal term which replaces the usual quadratic proximal term. This leads to an interior proximal type algorithm. Each iteration consists in a prediction step followed by a correction step as in the extragradient method. In a first algorithm each of these steps is obtained by solving an unconstrained minimization problem, while in a second algorithm the correction step is replaced by an Armijo-backtracking linesearch followed by an hyperplane projection step. We prove that our algorithms are convergent under mild assumptions: pseudomonotonicity for the two algorithms and a Lipschitz property for the first one. Finally we present some numerical experiments to illustrate the behavior of the proposed algorithms.
引用
收藏
页码:175 / 192
页数:17
相关论文
共 50 条
  • [31] Two new extragradient methods for solving equilibrium problems
    Rehman, Habib Ur
    Gibali, Aviv
    Kumam, Poom
    Sitthithakerngkiet, Kanokwan
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [32] Two new extragradient methods for solving equilibrium problems
    Habib ur Rehman
    Aviv Gibali
    Poom Kumam
    Kanokwan Sitthithakerngkiet
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [33] Extragradient subgradient methods for solving bilevel equilibrium problems
    Yuying, Tadchai
    Bui Van Dinh
    Kim, Do Sang
    Plubtieng, Somyot
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [34] The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in hilbert spaces
    Farid, Mohammad
    [J]. Journal of Applied and Numerical Optimization, 2019, 1 (03): : 335 - 345
  • [35] The subgradient extragradient method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces
    Jolaoso, L. O.
    [J]. OPTIMIZATION, 2022, 71 (14) : 4051 - 4081
  • [36] On a Bregman regularized proximal point method for solving equilibrium problems
    Cruz Neto, J. X.
    Santos, P. S. M.
    Silva, R. C. M.
    Souza, J. C. O.
    [J]. OPTIMIZATION LETTERS, 2019, 13 (05) : 1143 - 1155
  • [37] On a Bregman regularized proximal point method for solving equilibrium problems
    J. X. Cruz Neto
    P. S. M. Santos
    R. C. M. Silva
    J. C. O. Souza
    [J]. Optimization Letters, 2019, 13 : 1143 - 1155
  • [38] A SELF-ADAPTIVE POPOV'S EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH APPLICATIONS
    Wairojjana, Nopparat
    Rehman, Habib Ur
    Pakkaranang, Nuttapol
    Hussain, Azhar
    Khanpanuk, Tiwabhorn
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (04): : 45 - 60
  • [39] Parallel Extragradient-Proximal Methods for Split Equilibrium Problems
    Dang Van Hieu
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (04) : 478 - 501
  • [40] Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Tan, Bing
    [J]. OPTIMIZATION, 2024, 73 (05) : 1329 - 1354