Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces

被引:1
|
作者
Xie, Zhongbing [1 ]
Cai, Gang [2 ]
Tan, Bing [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[4] Univ British Columbia, Dept Math, Kelowna, BC, Canada
基金
中国国家自然科学基金;
关键词
Equilibrium problem; fixed point; pseudomonotone bifunction; strong convergence; subgradient extragradient method; VARIATIONAL INEQUALITY PROBLEMS; CONVERGENCE THEOREMS; APPROXIMATION METHOD; SADDLE-POINTS; ALGORITHMS; PROJECTION; SYSTEM; VISCOSITY; MAPPINGS; FAMILY;
D O I
10.1080/02331934.2022.2157677
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a new inertial subgradient extragradient method for solving equilibrium problems with pseudomonotone and Lipschitz-type bifunctions and fixed point problems for nonexpansive mappings in real Hilbert spaces. Precisely, we prove that the sequence generated by proposed algorithm converges strongly to a common solution of equilibrium problems and fixed point problems. We use an effective self-adaptive step size rule to accelerate the convergence process of our proposed iterative algorithm. Moreover, some numerical results are given to show the effectiveness of the proposed algorithm. The results obtained in this paper extend and improve many recent ones in the literature.
引用
收藏
页码:1329 / 1354
页数:26
相关论文
共 50 条
  • [1] The subgradient extragradient method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces
    Jolaoso, L. O.
    OPTIMIZATION, 2022, 71 (14) : 4051 - 4081
  • [2] The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in hilbert spaces
    Farid, Mohammad
    Journal of Applied and Numerical Optimization, 2019, 1 (03): : 335 - 345
  • [3] Modified mildly inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and nonexpansive fixed point problems
    Akutsah, Francis
    Mebawondu, Akindele Adebayo
    Ofem, Austine Efut
    George, Reny
    Nabwey, Hossam A.
    Narain, Ojen Kumar
    AIMS MATHEMATICS, 2024, 9 (07): : 17276 - 17290
  • [4] The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space
    Yang, Jun
    Liu, Hongwei
    OPTIMIZATION LETTERS, 2020, 14 (07) : 1803 - 1816
  • [5] The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space
    Jun Yang
    Hongwei Liu
    Optimization Letters, 2020, 14 : 1803 - 1816
  • [6] An inertial extragradient method for solving strongly pseudomonotone equilibrium problems in Hilbert spaces
    Le, Thi Thanh Hai
    Thong, Duong Viet
    Vuong, Phan Tu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [7] The Ishikawa Subgradient Extragradient Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
    Duc, Manh Hy
    Thanh, Ha Nguyen Thi
    Huyen, Thanh Tran Thi
    Dinh, Bui Van
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) : 1065 - 1088
  • [8] A new double inertial subgradient extragradient algorithm for solving split pseudomonotone equilibrium problems and fixed point problems
    A. A. Mebawondu
    A. E. Ofem
    F. Akutsah
    C. Agbonkhese
    F. Kasali
    O. K. Narain
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1321 - 1349
  • [9] EXTRAGRADIENT ALGORITHMS FOR SPLIT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Wang, Shenghua
    Zhang, Yifan
    Wang, Wenxin
    Guo, Haichao
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [10] A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS
    Ceng, L. C.
    Petrusel, A.
    Qin, X.
    Yao, J. C.
    FIXED POINT THEORY, 2020, 21 (01): : 93 - 108