Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces

被引:1
|
作者
Xie, Zhongbing [1 ]
Cai, Gang [2 ]
Tan, Bing [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[4] Univ British Columbia, Dept Math, Kelowna, BC, Canada
基金
中国国家自然科学基金;
关键词
Equilibrium problem; fixed point; pseudomonotone bifunction; strong convergence; subgradient extragradient method; VARIATIONAL INEQUALITY PROBLEMS; CONVERGENCE THEOREMS; APPROXIMATION METHOD; SADDLE-POINTS; ALGORITHMS; PROJECTION; SYSTEM; VISCOSITY; MAPPINGS; FAMILY;
D O I
10.1080/02331934.2022.2157677
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a new inertial subgradient extragradient method for solving equilibrium problems with pseudomonotone and Lipschitz-type bifunctions and fixed point problems for nonexpansive mappings in real Hilbert spaces. Precisely, we prove that the sequence generated by proposed algorithm converges strongly to a common solution of equilibrium problems and fixed point problems. We use an effective self-adaptive step size rule to accelerate the convergence process of our proposed iterative algorithm. Moreover, some numerical results are given to show the effectiveness of the proposed algorithm. The results obtained in this paper extend and improve many recent ones in the literature.
引用
收藏
页码:1329 / 1354
页数:26
相关论文
共 50 条
  • [41] A new inertial condition on the subgradient extragradient method for solving pseudomonotone equilibrium problem
    Izuchukwu C.
    Ogwo G.N.
    Zinsou B.
    Communications in Nonlinear Science and Numerical Simulation, 2024, 135
  • [42] A self-adaptive parallel subgradient extragradient method for finite family of pseudomonotone equilibrium and fixed point problems
    Jolaoso, Lateef Olakunle
    Aphane, Maggie
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [43] Modified inertial subgradient extragradient method for equilibrium problems
    Jolaoso, Lateef Olakunle
    Shehu, Yekini
    Nwokoye, Regina N.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (02) : 599 - 616
  • [44] Alternated inertial subgradient extragradient method for equilibrium problems
    Yekini Shehu
    Qiao-Li Dong
    Lulu Liu
    Jen-Chih Yao
    TOP, 2023, 31 : 1 - 30
  • [45] A self-adaptive parallel subgradient extragradient method for finite family of pseudomonotone equilibrium and fixed point problems
    Lateef Olakunle Jolaoso
    Maggie Aphane
    Computational and Applied Mathematics, 2022, 41
  • [46] The inertial iterative extragradient methods for solving pseudomonotone equilibrium programming in Hilbert spaces
    Rehman, Habib Ur
    Kumam, Poom
    Argyros, Ioannis K.
    Kumam, Wiyada
    Shutaywi, Meshal
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [47] Alternated inertial subgradient extragradient method for equilibrium problems
    Shehu, Yekini
    Dong, Qiao-Li
    Liu, Lulu
    Yao, Jen-Chih
    TOP, 2023, 31 (01) : 1 - 30
  • [48] The inertial iterative extragradient methods for solving pseudomonotone equilibrium programming in Hilbert spaces
    Habib ur Rehman
    Poom Kumam
    Ioannis K. Argyros
    Wiyada Kumam
    Meshal Shutaywi
    Journal of Inequalities and Applications, 2022
  • [49] Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AXIOMS, 2023, 12 (10)
  • [50] Extragradient method with inertial iterative technique for pseudomonotone split equilibrium and fixed point problems of new mappings
    Farid, Mohammad
    Peeyada, Pronpat
    Ali, Rehan
    Cholamjiak, Watcharaporn
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1463 - 1485