Stability and Instability of Steady States for a Branching Random Walk

被引:0
|
作者
Yaqin Feng
Stanislav Molchanov
Elena Yarovaya
机构
[1] Ohio University,Department of Mathematics
[2] University of North Carolina at Charlotte,Department of Mathematics and Statistics
[3] Higher School of Economics,National Research University
[4] Lomonosov Moscow State University,Department of Probability Theory, Faculty of Mathematics and Mechanics
关键词
Branching random walk; Local perturbation; Steady state; Limit theorems; 60J80; 60J35; 60G32;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the time evolution of a lattice branching random walk with local perturbations. Under certain conditions, we prove the Carleman type estimation for the moments of a particle subpopulation number and show the existence of a steady state.
引用
收藏
页码:207 / 218
页数:11
相关论文
共 50 条
  • [21] BRANCHING RANDOM-WALK ON AN INTERVAL
    MEISTER, PI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1984, 37 (04): : 461 - 464
  • [22] The distribution of the particles of a branching random walk
    Revesz, P
    CONVERGENCE IN ERGODIC THEORY AND PROBABILITY, 1996, 5 : 345 - 363
  • [23] On the support of the simple branching random walk
    Johnson, Torrey
    STATISTICS & PROBABILITY LETTERS, 2014, 91 : 107 - 109
  • [24] Branching random walk with a single source
    Albeverio, S
    Bogachev, LV
    Yarovaya, EB
    COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 9 - 19
  • [25] On the boundary at infinity for branching random walk
    Candellero, Elisabetta
    Hutchcroft, Tom
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [26] On the Multifractal Analysis of the Branching Random Walk in
    Attia, Najmeddine
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (04) : 1329 - 1349
  • [27] ON THE DERIVATIVE MARTINGALE IN A BRANCHING RANDOM WALK
    Buraczewski, Dariusz
    Iksanov, Alexander
    Mallein, Bastien
    ANNALS OF PROBABILITY, 2021, 49 (03): : 1164 - 1204
  • [28] The spread of a catalytic branching random walk
    Carmona, Philippe
    Hu, Yueyun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (02): : 327 - 351
  • [29] A prediction problem of the branching random walk
    Révész, P
    JOURNAL OF APPLIED PROBABILITY, 2004, 41A : 25 - 31
  • [30] MINIMAL POSITIONS IN A BRANCHING RANDOM WALK
    McDiarmid, Colin
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (01): : 128 - 139