On the boundary at infinity for branching random walk

被引:0
|
作者
Candellero, Elisabetta [1 ]
Hutchcroft, Tom [2 ]
机构
[1] Roma Tre Univ, Dept Math & Phys, Rome, Italy
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
关键词
Martin boundary; branching random walk; Markov chains; POISSON FORMULA; LIMIT-THEOREM; TRANSITION; GRAPHS; NUMBER;
D O I
10.1214/23-ECP560
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that a supercritical branching random walk on a transient Markov chain converges almost surely under rescaling to a random measure on the Martin boundary of the underlying Markov chain. Several open problems and conjectures about this limiting measure are presented.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The minimum of a branching random walk outside the boundary case
    Barral, Julien
    Hu, Yueyun
    Madaule, Thomas
    BERNOULLI, 2018, 24 (02) : 801 - 841
  • [2] Convergence of complex martingales in the branching random walk: the boundary
    Kolesko, Konrad
    Meiners, Matthias
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [3] Random walk on barely supercritical branching random walk
    van der Hofstad, Remco
    Hulshof, Tim
    Nagel, Jan
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 1 - 53
  • [4] Random walk on barely supercritical branching random walk
    Remco van der Hofstad
    Tim Hulshof
    Jan Nagel
    Probability Theory and Related Fields, 2020, 177 : 1 - 53
  • [5] Survival probability of the branching random walk killed below a linear boundary
    Berard, Jean
    Gouere, Jean-Baptiste
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 396 - 418
  • [6] Branching random walk with a critical branching part
    Kesten, H
    JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (04) : 921 - 962
  • [7] Dilemma Produced by Infinity of a Random Walk
    Li Jing-Hui
    CHINESE PHYSICS LETTERS, 2015, 32 (05)
  • [8] On the moments of a branching random walk in a random medium
    Bogachev, LV
    Yarovaya, EB
    RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (05) : 989 - 991
  • [9] A random walk with a branching system in random environments
    Ying-qiu Li
    Xu Li
    Quan-sheng Liu
    Science in China Series A: Mathematics, 2007, 50 : 698 - 704
  • [10] A random walk with a branching system in random environments
    Li, Ying-qiu
    Li, Xu
    Li, Quan-sheng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (05): : 698 - 704