Kuramoto–Sivashinsky equation;
Global solvability;
Anisotropic estimates;
Dynamical systems ;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We address the global solvability of the Kuramoto–Sivashinsky equation in a rectangular domain [0,L1]×[0,L2]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[0,L_1]\times [0,L_2]$$\end{document}. We give sufficient conditions on the width L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_2$$\end{document} of the domain, depending on the length L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_1$$\end{document}, so that the obtained solutions are global. Our proofs are based on anisotropic estimates.