Anisotropic Estimates for the Two-Dimensional Kuramoto–Sivashinsky Equation

被引:0
|
作者
Said Benachour
Igor Kukavica
Walter Rusin
Mohammed Ziane
机构
[1] Université de Lorraine,Institut Elie Cartan
[2] University of Southern California,Department of Mathematics
[3] Oklahoma State University,Department of Mathematics
关键词
Kuramoto–Sivashinsky equation; Global solvability; Anisotropic estimates; Dynamical systems ;
D O I
暂无
中图分类号
学科分类号
摘要
We address the global solvability of the Kuramoto–Sivashinsky equation in a rectangular domain [0,L1]×[0,L2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,L_1]\times [0,L_2]$$\end{document}. We give sufficient conditions on the width L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} of the domain, depending on the length L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}, so that the obtained solutions are global. Our proofs are based on anisotropic estimates.
引用
收藏
页码:461 / 476
页数:15
相关论文
共 50 条
  • [31] REMARKS ON THE KURAMOTO-SIVASHINSKY EQUATION
    NICOLAENKO, B
    SCHEURER, B
    PHYSICA D, 1984, 12 (1-3): : 391 - 395
  • [32] ANALYTICITY FOR THE KURAMOTO-SIVASHINSKY EQUATION
    COLLET, P
    ECKMANN, JP
    EPSTEIN, H
    STUBBE, J
    PHYSICA D, 1993, 67 (04): : 321 - 326
  • [33] On the stochastic Kuramoto-Sivashinsky equation
    Duan, JQ
    Ervin, VJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (02) : 205 - 216
  • [34] High-dimensional chaotic saddles in the Kuramoto-Sivashinsky equation
    Rempel, EL
    Chian, ACL
    PHYSICS LETTERS A, 2003, 319 (1-2) : 104 - 109
  • [35] STEADY SOLUTIONS OF THE KURAMOTO SIVASHINSKY EQUATION
    MICHELSON, D
    PHYSICA D, 1986, 19 (01): : 89 - 111
  • [36] High-dimensional interior crisis in the Kuramoto-Sivashinsky equation
    Chian, ACL
    Rempel, EL
    Macau, EE
    Rosa, RR
    Christiansen, F
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 035203
  • [37] Dissipative structures of the Kuramoto–Sivashinsky equation
    Kudryashov N.A.
    Ryabov P.N.
    Petrov B.A.
    Automatic Control and Computer Sciences, 2015, 49 (07) : 508 - 513
  • [38] UNIVERSAL PROPERTIES OF THE 2-DIMENSIONAL KURAMOTO-SIVASHINSKY EQUATION
    JAYAPRAKASH, C
    HAYOT, F
    PANDIT, R
    PHYSICAL REVIEW LETTERS, 1993, 71 (01) : 12 - 15
  • [39] Regularity Criteria for the Kuramoto-Sivashinsky Equation in Dimensions Two and Three
    Larios, Adam
    Rahman, Mohammad Mahabubur
    Yamazaki, Kazuo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [40] ON THE CONTROL OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION
    Cerpa, Eduardo
    Guzman, Patricio
    Mercado, Alberto
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 165 - 194