Anisotropic Estimates for the Two-Dimensional Kuramoto–Sivashinsky Equation

被引:0
|
作者
Said Benachour
Igor Kukavica
Walter Rusin
Mohammed Ziane
机构
[1] Université de Lorraine,Institut Elie Cartan
[2] University of Southern California,Department of Mathematics
[3] Oklahoma State University,Department of Mathematics
关键词
Kuramoto–Sivashinsky equation; Global solvability; Anisotropic estimates; Dynamical systems ;
D O I
暂无
中图分类号
学科分类号
摘要
We address the global solvability of the Kuramoto–Sivashinsky equation in a rectangular domain [0,L1]×[0,L2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,L_1]\times [0,L_2]$$\end{document}. We give sufficient conditions on the width L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} of the domain, depending on the length L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document}, so that the obtained solutions are global. Our proofs are based on anisotropic estimates.
引用
收藏
页码:461 / 476
页数:15
相关论文
共 50 条