Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes

被引:0
|
作者
Yusuke Miura
机构
来源
关键词
Symmetric stable process; Dirichlet form; Hardy inequality; Girsanov transformation; 60J45; 60J75; 31C05;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that Lμ:=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{\mu } :=$$\end{document}-(-Δ)α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-(-\Delta )^{\alpha /2}$$\end{document}+μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+ \mu $$\end{document} is subcritical, where (-Δ)α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{\alpha /2}$$\end{document} is the fractional Laplacian and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a positive smooth measure on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} in the Green-tight Kato class. In this paper, we probabilistically construct a Hardy-weight for a quadratic form Eμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}^{\mu }$$\end{document} associated with Lμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{\mu }$$\end{document} which is optimal in a certain sense. As a side product, we characterize the criticality and subcriticality of Eμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}^{\mu }$$\end{document} through Girsanov transformations.
引用
收藏
页码:134 / 166
页数:32
相关论文
共 50 条
  • [1] Optimal Hardy inequalities for Schrödinger operators on graphs
    Matthias Keller
    Yehuda Pinchover
    Felix Pogorzelski
    Communications in Mathematical Physics, 2018, 358 : 767 - 790
  • [2] Optimal Hardy Inequalities for Schrodinger Operators Based on Symmetric Stable Processes
    Miura, Yusuke
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 134 - 166
  • [3] OPTIMAL HARDY-TYPE INEQUALITIES FOR SCHRÓDINGER FORMS
    Takeda, Masayoshi
    OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (04) : 761 - 776
  • [4] Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds
    Kazuo Akutagawa
    Hironori Kumura
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 67 - 88
  • [5] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [6] On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators
    Jacek Dziubański
    Jacek Zienkiewicz
    Journal of Fourier Analysis and Applications, 2013, 19 : 447 - 456
  • [7] Complex Dirichlet Forms: Non Symmetric Diffusion Processes and Schrödinger Operators
    Sergio Albeverio
    Stefania Ugolini
    Potential Analysis, 2000, 12 : 403 - 417
  • [8] New applications of Schrödinger type inequalities in the Schrödingerean Hardy space
    Yong Lu
    Liang Kou
    Jianguo Sun
    Guodong Zhao
    Wenshan Wang
    Qilong Han
    Journal of Inequalities and Applications, 2017
  • [9] Generalized Schrödinger operators on the Heisenberg group and Hardy spaces
    Bui, The Anh
    Hong, Qing
    Hu, Guorong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (10)
  • [10] Characterizations of product Hardy space associated to Schrödinger operators
    Kai Zhao
    Su-ying Liu
    Xiu-tian Jiang
    Applied Mathematics-A Journal of Chinese Universities, 2019, 34 : 379 - 392