Optimal Hardy inequalities for Schrödinger operators on graphs

被引:0
|
作者
Matthias Keller
Yehuda Pinchover
Felix Pogorzelski
机构
[1] Universität Potsdam,Institut für Mathematik
[2] Technion-Israel Institute of Technology,Department of Mathematics
[3] Universität Leipzig,Institut für Mathematik
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For a given subcritical discrete Schrödinger operator H on a weighted infinite graph X, we construct a Hardy-weight w which is optimal in the following sense. The operator H − λw is subcritical in X for all λ < 1, null-critical in X for λ = 1, and supercritical near any neighborhood of infinity in X for any λ > 1. Our results rely on a criticality theory for Schrödinger operators on general weighted graphs.
引用
收藏
页码:767 / 790
页数:23
相关论文
共 50 条
  • [1] Optimal Hardy Inequalities for Schrödinger Operators Based on Symmetric Stable Processes
    Yusuke Miura
    Journal of Theoretical Probability, 2023, 36 : 134 - 166
  • [2] OPTIMAL HARDY-TYPE INEQUALITIES FOR SCHRÓDINGER FORMS
    Takeda, Masayoshi
    OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (04) : 761 - 776
  • [3] Optimal Hardy inequalities for Schrodinger operators on graphs
    Keller, Matthias
    Pinchover, Yehuda
    Pogorzelski, Felix
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (02) : 767 - 790
  • [4] Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds
    Kazuo Akutagawa
    Hironori Kumura
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 67 - 88
  • [5] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [6] On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators
    Jacek Dziubański
    Jacek Zienkiewicz
    Journal of Fourier Analysis and Applications, 2013, 19 : 447 - 456
  • [7] An Agmon estimate for Schrödinger operators on graphs
    Stefan Steinerberger
    Letters in Mathematical Physics, 2023, 113
  • [8] New applications of Schrödinger type inequalities in the Schrödingerean Hardy space
    Yong Lu
    Liang Kou
    Jianguo Sun
    Guodong Zhao
    Wenshan Wang
    Qilong Han
    Journal of Inequalities and Applications, 2017
  • [9] Generalized Schrödinger operators on the Heisenberg group and Hardy spaces
    Bui, The Anh
    Hong, Qing
    Hu, Guorong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (10)
  • [10] Characterizations of product Hardy space associated to Schrödinger operators
    Kai Zhao
    Su-ying Liu
    Xiu-tian Jiang
    Applied Mathematics-A Journal of Chinese Universities, 2019, 34 : 379 - 392