Performance of an air-cathode microbial fuel cell under varied relative humidity conditions in the cathode chamber

被引:0
|
作者
Mungyu Lee
Ramesh Kakarla
Booki Min
机构
[1] Kyung Hee University,Department of Environmental Science and Engineering
[2] Gwangju Institute of Science and Technology (GIST),School of Earth Sciences and Environmental Engineering
来源
关键词
Air-cathode MFC; Relative humidity; Cell voltage; Cathode potentials; Oxygen transport;
D O I
暂无
中图分类号
学科分类号
摘要
The performance of an air-cathode microbial fuel cell (MFC) with a cap arrangement was significantly affected by humidity conditions in the cathode. An MFC at a relative humidity (RH) of 88% produced a highest cell voltage of 0.42 V (600 Ω) compared to other operations at 50% (0.34 V) and 30% (0.29 V) RHs. During polarization analysis, MFC operation at 88% RH produced a maximum power density of 0.377 W/m2 (a current density of 1.5 A/m2), which was 1.8 and 2.9 times higher than with 50% and 30% RHs, respectively. Cyclic voltammogram analysis revealed a higher reduction current of − 0.073 A with 88% RH. Furthermore, no increase in dissolved oxygen concentration in the anode chamber was observed with 88% RH. This result suggests that control of humidity conditions in cathode chamber could maximize power generation from an air-cathode MFC.
引用
收藏
页码:1247 / 1254
页数:7
相关论文
共 50 条
  • [31] Single chamber air-cathode microbial fuel cells as biosensors for determination of biodegradable organics
    Lorant, Balint
    Gyalai-Korpos, Miklos
    Goryanin, Igor
    Tardy, Gabor Mark
    [J]. BIOTECHNOLOGY LETTERS, 2019, 41 (4-5) : 555 - 563
  • [32] CeO2 doped Pt/C as an efficient cathode catalyst for an air-cathode single-chamber microbial fuel cell
    Li, Ling
    Wang, Mingkun
    Cui, Ning
    Ding, Yuedi
    Feng, Qingling
    Zhang, Wenming
    Li, Xiaowei
    [J]. RSC ADVANCES, 2016, 6 (31) : 25877 - 25881
  • [33] Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst
    Tremouli, Asimina
    Pandis, Pavlos K.
    Kamperidis, Theofilos
    Argirusis, Christos
    Stathopoulos, Vassilis N.
    Lyberatos, Gerasimos
    [J]. WATER, 2023, 15 (05)
  • [34] A single chamber stackable microbial fuel cell with air cathode
    Bin Wang
    Jong-In Han
    [J]. Biotechnology Letters, 2009, 31 : 387 - 393
  • [35] A single chamber stackable microbial fuel cell with air cathode
    Wang, Bin
    Han, Jong-In
    [J]. BIOTECHNOLOGY LETTERS, 2009, 31 (03) : 387 - 393
  • [36] Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies
    Butler, Caitlyn S.
    Nerenberg, Robert
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 86 (05) : 1399 - 1408
  • [37] Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies
    Caitlyn S. Butler
    Robert Nerenberg
    [J]. Applied Microbiology and Biotechnology, 2010, 86 : 1399 - 1408
  • [38] Improved bioelectricity generation of air-cathode microbial fuel cell using sodium hexahydroxostannate as cathode catalyst
    Rout, Swagatika
    Parwaiz, Shaikh
    Nayak, Arpan K.
    Varanasi, Jhansi L.
    Pradhan, Debabrata
    Das, Debabrata
    [J]. JOURNAL OF POWER SOURCES, 2020, 450
  • [39] Substrate Crossover Effect and Performance Regeneration of the Biofouled Rotating Air-Cathode in Microbial Fuel Cell
    Chen, Shuiliang
    Patil, Sunil A.
    Schroeder, Uwe
    [J]. FRONTIERS IN ENERGY RESEARCH, 2018, 6