A single chamber stackable microbial fuel cell with air cathode

被引:0
|
作者
Bin Wang
Jong-In Han
机构
[1] Rensselaer Polytechnic Institute,Department of Civil and Environmental Engineering
[2] KAIST,Department of Civil and Environmental Engineering
来源
Biotechnology Letters | 2009年 / 31卷
关键词
Air cathode; Bioelectricity; Microbial fuel cell; Power generation; Wastewater;
D O I
暂无
中图分类号
学科分类号
摘要
A single chamber stackable microbial fuel cell (SCS-MFC) comprising four MFC units was developed. When operated separately, each unit generated a volumetric power density (Pmax,V) of 26.2 W/m3 at 5.8 mA or 475 mV. The total columbic efficiency was 40% for each unit. Parallel connection of four units produced the same level of power output (Pmax,V of 22.8 W/m3 at 27 mA), which was approximately four times higher than a single unit alone. Series connection of four units, however, only generated a maximum power output of 14.7 W/m3 at 730 mV, which was less than the expected value. This energy loss appeared to be caused by lateral current flow between two units, particularly in the middle of the system. The cathode was found to be the major limiting factor in our system. Compared to the stacked operation of multiple separate MFCs, our single chamber reactor does not require a delicate water distribution system and thus is more easily implemented in pre-existing wastewater treatment facilities with serpentine flow paths, such as fixed-bed reactors, with minimal infrastructure changes.
引用
收藏
页码:387 / 393
页数:6
相关论文
共 50 条
  • [1] A single chamber stackable microbial fuel cell with air cathode
    Wang, Bin
    Han, Jong-In
    [J]. BIOTECHNOLOGY LETTERS, 2009, 31 (03) : 387 - 393
  • [2] FUEL 132-Single chamber stackable microbial fuel cell with air cathode
    Han, Jong-In
    Wang, Bin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [3] A Single-Chamber Microbial Fuel Cell without an Air Cathode
    Nimje, Vanita Roshan
    Chen, Chien-Cheng
    Chen, Hau-Ren
    Chen, Chien-Yen
    Tseng, Min-Jen
    Cheng, Kai-Chien
    Shih, Ruey-Chyuan
    Chang, Young-Fo
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (03) : 3933 - 3948
  • [4] Biohybrid Cathode in Single Chamber Microbial Fuel Cell
    Massaglia, Giulia
    Fiorello, Isabella
    Sacco, Adriano
    Margaria, Valentina
    Pirri, Candido Fabrizio
    Quaglio, Marzia
    [J]. NANOMATERIALS, 2019, 9 (01)
  • [5] Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell
    Li, Na
    Kakarla, Ramesh
    Moon, Jung Mi
    Min, Booki
    [J]. JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 25 (07) : 1114 - 1118
  • [6] Research on an Air-cathode Single Chamber Microbial Fuel Cell Using Organic Wastewater
    Zhang, Wen-wen
    Huang, Bing
    Chen, Liang
    Li, Yin-guang
    Zheng, Hui-wen
    Li, Meng-yang
    Sun, Dong-gou
    [J]. 2016 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND ENGINEERING (ESE 2016), 2016, : 633 - 639
  • [7] Effect of nitrate on the performance of single chamber air cathode microbial fuel cells
    Sukkasem, Chontisa
    Xu, Shoutao
    Park, Sunhwa
    Boonsawang, Piyarat
    Liu, Hong
    [J]. WATER RESEARCH, 2008, 42 (19) : 4743 - 4750
  • [8] Single chamber microbial fuel cell with Ni-Co cathode
    Wlodarczyk, Barbara
    Wlodarczyk, Pawel P.
    Kalinichenko, Antonina
    [J]. INTERNATIONAL CONFERENCE ENERGY, ENVIRONMENT AND MATERIAL SYSTEMS (EEMS 2017), 2017, 19
  • [9] Electricity generation and wastewater treatment using an Air-Cathode Single Chamber Microbial Fuel Cell
    Cui Kangping
    Wang Ye
    Sun Shiqun
    [J]. 2010 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2010,
  • [10] Energy Harvesting from Wastewater with a Single-Chamber Air-Cathode Microbial Fuel Cell
    Domingos Serra, Pedro Miguel
    Espirito-Santo, Antonio
    Magrinho, Manuel
    [J]. IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3847 - 3851