Subspace mixed rational time-frequency multiwindow Gabor frames and their Gabor duals

被引:0
|
作者
Yan Zhang
Yun-Zhang Li
机构
[1] North Minzu University,School of Mathematics and Information Science
[2] Beijing University of Technology,College of Applied Sciences
关键词
Gabor frame; Mixed multiwindow Gabor frame; Dual; Oblique dual; Gabor dual; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
For a usual multiwindow Gabor system, all windows share common time-frequency shifts. A mixed multiwindow Gabor system is one of its generalizations, for which time-frequency shifts vary with the windows. This paper addresses subspace mixed multiwindow Gabor systems with rational time-frequency product lattices. It is a continuation of (Li and Zhang in Abstr. Appl. Anal. 2013:357242, 2013; Zhang and Li in J. Korean Math. Soc. 51:897–918, 2014). In (Li and Zhang in Abstr. Appl. Anal. 2013:357242, 2013) we dealt with discrete subspace mixed Gabor systems and in (Zhang and Li in J. Korean Math. Soc. 51:897–918, 2014) with L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mathbb{R})$\end{document} ones. In this paper, using a suitable Zak transform matrix method, we characterize subspace mixed multiwindow Gabor frames and their Gabor duals, obtain explicit expressions of Gabor duals, and characterize the uniqueness of Gabor duals. We also provide some examples, which show that there exist significant differences between mixed multiwindow Gabor frames and usual multiwindow Gabor frames.
引用
收藏
相关论文
共 50 条
  • [41] Time-Frequency Shift Invariance of Gabor Spaces
    Caragea, Andrei
    Lee, Dae Gwan
    Philipp, Friedrich
    Voigtlaender, Felix
    [J]. 2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [43] Correction to:Gabor frames for rational functions
    Yurii Belov
    Aleksei Kulikov
    Yurii Lyubarskii
    [J]. Inventiones mathematicae, 2023, 231 (2) : 929 - 930
  • [44] Time-frequency distributions of time-frequency periodic operators and the discrete Gabor transformation
    Sirianunpiboon, S
    Howard, SD
    [J]. ISSPA 96 - FOURTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 718 - 721
  • [45] Subspace dual super wavelet and Gabor frames
    Yu Tian
    YunZhang Li
    [J]. Science China Mathematics, 2017, 60 : 2429 - 2446
  • [46] Subspace dual super wavelet and Gabor frames
    TIAN Yu
    LI YunZhang
    [J]. Science China Mathematics, 2017, 60 (12) : 2429 - 2446
  • [47] Subspace dual super wavelet and Gabor frames
    Tian, Yu
    Li, YunZhang
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (12) : 2429 - 2446
  • [48] Dunkl-Gabor transform and time-frequency concentration
    Ghobber, Saifallah
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 255 - 270
  • [49] Time-Frequency Fading Algorithms Based on Gabor Multipliers
    Kreme, A. Marina
    Emiya, Valentin
    Chaux, Caroline
    Torresani, Bruno
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (01) : 65 - 77
  • [50] Scaled Gabor representation: A refined time-frequency decomposition
    Li, SD
    [J]. WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING IV, PTS 1 AND 2, 1996, 2825 : 140 - 151