Subspace mixed rational time-frequency multiwindow Gabor frames and their Gabor duals

被引:0
|
作者
Yan Zhang
Yun-Zhang Li
机构
[1] North Minzu University,School of Mathematics and Information Science
[2] Beijing University of Technology,College of Applied Sciences
关键词
Gabor frame; Mixed multiwindow Gabor frame; Dual; Oblique dual; Gabor dual; 42C15; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
For a usual multiwindow Gabor system, all windows share common time-frequency shifts. A mixed multiwindow Gabor system is one of its generalizations, for which time-frequency shifts vary with the windows. This paper addresses subspace mixed multiwindow Gabor systems with rational time-frequency product lattices. It is a continuation of (Li and Zhang in Abstr. Appl. Anal. 2013:357242, 2013; Zhang and Li in J. Korean Math. Soc. 51:897–918, 2014). In (Li and Zhang in Abstr. Appl. Anal. 2013:357242, 2013) we dealt with discrete subspace mixed Gabor systems and in (Zhang and Li in J. Korean Math. Soc. 51:897–918, 2014) with L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mathbb{R})$\end{document} ones. In this paper, using a suitable Zak transform matrix method, we characterize subspace mixed multiwindow Gabor frames and their Gabor duals, obtain explicit expressions of Gabor duals, and characterize the uniqueness of Gabor duals. We also provide some examples, which show that there exist significant differences between mixed multiwindow Gabor frames and usual multiwindow Gabor frames.
引用
收藏
相关论文
共 50 条
  • [31] Time-frequency analysis on flat tori and Gabor frames in finite dimensions
    Abreu, L. D.
    Balazs, P.
    Holighaus, N.
    Luef, F.
    Speckbacher, M.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 69
  • [32] Gabor frames with rational density
    Lyubarskii, Yurii
    Nes, Preben Graberg
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 34 (03) : 488 - 494
  • [33] The duals of Gabor frames on discrete periodic sets
    Lian, Qiao-Fang
    Li, Yun-Zhang
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [34] Super Oblique Gabor Duals of Super Gabor Frames on Discrete Periodic Sets
    Lian, Qiao-Fang
    Li, Yun-Zhang
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (03) : 284 - 322
  • [35] Time-frequency structured decorrelation of speech signals via nonseparable Gabor frames
    Kozek, W
    Feichtinger, HG
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 1439 - 1442
  • [36] Gabor Duals for Operator-valued Gabor Frames on Locally Compact Abelian Groups
    Y. Hu
    P. Li
    [J]. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 : 328 - 338
  • [37] Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets
    Li YunZhang
    Lian QiaoFang
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (05) : 987 - 1010
  • [38] Gabor Duals for Operator-valued Gabor Frames on Locally Compact Abelian Groups
    Hu, Y.
    Li, P.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (06): : 328 - 338
  • [39] Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets
    LI YunZhang1 & LIAN QiaoFang2
    2Department of Mathematics
    [J]. Science China Mathematics, 2011, 54 (05) : 987 - 1010
  • [40] Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets
    YunZhang Li
    QiaoFang Lian
    [J]. Science China Mathematics, 2011, 54 : 987 - 1010