Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation

被引:0
|
作者
Tadahiro Oh
Nikolay Tzvetkov
机构
[1] James Clerk Maxwell Building,School of Mathematics, The University of Edinburgh
[2] The King’s Buildings,The Maxwell Institute for the Mathematical Sciences
[3] James Clerk Maxwell Building,undefined
[4] The King’s Buildings,undefined
[5] Université de Cergy-Pontoise,undefined
来源
关键词
Fourth order nonlinear Schrödinger equation; Biharmonic nonlinear Schrödinger equation; Gaussian measure; Quasi-invariance; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces Hs(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s({\mathbb {T}})$$\end{document}, s>34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s > \frac{3}{4}$$\end{document}, are quasi-invariant under the flow.
引用
收藏
页码:1121 / 1168
页数:47
相关论文
共 50 条
  • [1] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrodinger equation
    Oh, Tadahiro
    Tzvetkov, Nikolay
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (3-4) : 1121 - 1168
  • [2] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrodinger equation in negative Sobolev spaces
    Oh, Tadahiro
    Seong, Kihoon
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [3] AN OPTIMAL REGULARITY RESULT ON THE QUASI-INVARIANT GAUSSIAN MEASURES FOR THE CUBIC FOURTH ORDER NONLINEAR SCHRODINGER EQUATION
    Oh, Tadahiro
    Sosoe, Philippe
    Tzvetkov, Nikolay
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 793 - 841
  • [4] Quasi-invariant Gaussian measures for the cubic nonlinear Schrodinger equation with third-order dispersion
    Oh, Tadahiro
    Tsutsumi, Yoshio
    Tzvetkov, Nikolay
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (04) : 366 - 381
  • [5] Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation
    Oh, Tadahiro
    Tzvetkov, Nikolay
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (06) : 1785 - 1826
  • [6] Invariant measures for the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    [J]. Mathematische Annalen, 2019, 374 : 1075 - 1138
  • [7] ON THE DECAY PROPERTY OF THE CUBIC FOURTH-ORDER SCHR?DINGER EQUATION
    Yu, Xueying
    Yue, Haitian
    Zhao, Zehua
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2619 - 2630
  • [8] Transport of Gaussian measures by the flow of the nonlinear Schrödinger equation
    Fabrice Planchon
    Nikolay Tzvetkov
    Nicola Visciglia
    [J]. Mathematische Annalen, 2020, 378 : 389 - 423
  • [9] Factorization technique for the fourth-order nonlinear Schrödinger equation
    Nakao Hayashi
    Pavel I. Naumkin
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2343 - 2377
  • [10] Topological Solitons of the Nonlinear Schrödinger’s Equation with Fourth Order Dispersion
    Anjan Biswas
    Daniela Milovic
    [J]. International Journal of Theoretical Physics, 2009, 48