Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation

被引:12
|
作者
Oh, Tadahiro [1 ,2 ]
Tzvetkov, Nikolay [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh, Midlothian, Scotland
[2] James Clerk Maxwell Bldg, Maxwell Inst Math Sci, Kings Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Cergy Pontoise, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Nonlinear wave equation; nonlinear Klein-Gordon equation; Gaussian measure; quasi-invariance; WIENER SPACE; DIFFERENTIAL-EQUATIONS;
D O I
10.4171/JEMS/956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the transport properties of the Gaussian measures on Sobolev spaces under the dynamics of the two-dimensional defocusing cubic nonlinear wave equation (NLW). Under some regularity condition, we prove quasi-invariance of the mean-zero Gaussian measures on Sobolev spaces for the NLW dynamics. We achieve this by introducing a simultaneous renormalization of the energy functional and its time derivative and establishing a renormalized energy estimate in the probabilistic setting.
引用
收藏
页码:1785 / 1826
页数:42
相关论文
共 50 条
  • [1] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrodinger equation
    Oh, Tadahiro
    Tzvetkov, Nikolay
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (3-4) : 1121 - 1168
  • [2] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
    Tadahiro Oh
    Nikolay Tzvetkov
    [J]. Probability Theory and Related Fields, 2017, 169 : 1121 - 1168
  • [3] Quasi-invariant Gaussian measures for the cubic nonlinear Schrodinger equation with third-order dispersion
    Oh, Tadahiro
    Tsutsumi, Yoshio
    Tzvetkov, Nikolay
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (04) : 366 - 381
  • [4] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrodinger equation in negative Sobolev spaces
    Oh, Tadahiro
    Seong, Kihoon
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (09)
  • [5] AN OPTIMAL REGULARITY RESULT ON THE QUASI-INVARIANT GAUSSIAN MEASURES FOR THE CUBIC FOURTH ORDER NONLINEAR SCHRODINGER EQUATION
    Oh, Tadahiro
    Sosoe, Philippe
    Tzvetkov, Nikolay
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 793 - 841
  • [6] Invariant Gibbs measures for the three dimensional cubic nonlinear wave equation
    Bringmann, Bjoern
    Deng, Yu
    Nahmod, Andrea R.
    Yue, Haitian
    [J]. INVENTIONES MATHEMATICAE, 2024, 236 (03) : 1133 - 1411
  • [7] INVARIANT MEASURES FOR THE DEFOCUSING NONLINEAR SCHRODINGER EQUATION
    Tzvetkov, Nikolay
    [J]. ANNALES DE L INSTITUT FOURIER, 2008, 58 (07) : 2543 - 2604
  • [8] Invariant and quasi-invariant measures on infinite-dimensional spaces
    V. V. Kozlov
    O. G. Smolyanov
    [J]. Doklady Mathematics, 2015, 92 : 743 - 746
  • [9] Invariant and quasi-invariant measures on infinite-dimensional spaces
    Kozlov, V. V.
    Smolyanov, O. G.
    [J]. DOKLADY MATHEMATICS, 2015, 92 (03) : 743 - 746
  • [10] On a Quasi-Invariant Associated with the Emergence of Anisotropy in Two-Dimensional Turbulence on a Rotating Sphere
    Saito, Izumi
    Ishioka, Keiichi
    [J]. JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94 (01) : 25 - 39