A Superconvergent Local Discontinuous Galerkin Method for Elliptic Problems

被引:0
|
作者
Slimane Adjerid
Mahboub Baccouch
机构
[1] Virginia Polytechnic Institute and State University,Department of Mathematics
[2] University of Nebraska at Omaha,Department of Mathematics
来源
关键词
Local discontinuous Galerkin method; Elliptic problems; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript we investigate the convergence properties of a minimal dissipation local discontinuous Galerkin(md-LDG) method for two-dimensional diffusion problems on Cartesian meshes. Numerical computations show O(hp+1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{L}^{2}$\end{document} convergence rates for the solution and its gradient and O(hp+2) superconvergent solutions at Radau points on enriched p-degree polynomial spaces. More precisely, a local error analysis reveals that the leading term of the LDG error for a p-degree discontinuous finite element solution is spanned by two (p+1)-degree right Radau polynomials in the x and y directions. Thus, LDG solutions are superconvergent at right Radau points obtained as a tensor product of the shifted roots of the (p+1)-degree right Radau polynomial. For tensor product polynomial spaces, the first component of the solution’s gradient is O(hp+2) superconvergent at tensor product of the roots of left Radau polynomial in x and right Radau polynomial in y while the second component is O(hp+2) superconvergent at the tensor product of the roots of the right Radau polynomial in x and left Radau polynomial in y. Several numerical simulations are performed to validate the theory.
引用
收藏
页码:113 / 152
页数:39
相关论文
共 50 条
  • [41] On the coupling of finite volume and discontinuous Galerkin method for elliptic problems
    Chidyagwai, Prince
    Mishev, Ilya
    Riviere, Beatrice
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2193 - 2204
  • [42] Very high order discontinuous Galerkin method in elliptic problems
    Jan Jaśkowiec
    [J]. Computational Mechanics, 2018, 62 : 1 - 21
  • [43] Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems
    Burman, Erik
    Stamm, Benjamin
    [J]. NUMERISCHE MATHEMATIK, 2010, 116 (02) : 213 - 241
  • [44] Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems
    Erik Burman
    Benjamin Stamm
    [J]. Numerische Mathematik, 2010, 116 : 213 - 241
  • [45] Discontinuous Galerkin approximations for elliptic problems
    Brezzi, F
    Manzini, G
    Marini, D
    Pietra, P
    Russo, A
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2000, 16 (04) : 365 - 378
  • [46] A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems
    Cockburn, Bernardo
    Dong, Bo
    Guzman, Johnny
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 1887 - 1916
  • [47] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhi-juan ZHANG
    Xi-jun YU
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 453 - 466
  • [48] Local discontinuous Galerkin method for parabolic interface problems
    Zhi-juan Zhang
    Xi-jun Yu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 453 - 466
  • [49] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhang, Zhi-juan
    Yu, Xi-jun
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 453 - 466
  • [50] The local discontinuous Galerkin method for contaminant transport problems
    Dawson, C
    Aizinger, V
    Cockburn, B
    [J]. DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 309 - 314