Local discontinuous Galerkin method for parabolic interface problems

被引:0
|
作者
Zhi-juan Zhang
Xi-jun Yu
机构
[1] Nanchang University,Department of Mathematics
[2] Institute of Applied Physics and Computational Mathematics,Laboratory of Computational Physics
关键词
parabolic interface problem; minimal dissipation local discontinuous Galerkin method; error estimates; 65M60; 35K15; 35K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the minimal dissipation local discontinuous Galerkin method is studied to solve the parabolic interface problems in two-dimensional convex polygonal domains. The interface may be arbitrary smooth curves. The proposed method is proved to be L2 stable and the order of error estimates in the given norm is O(h|logh|1/2). Numerical experiments show the efficiency and accuracy of the method.
引用
收藏
页码:453 / 466
页数:13
相关论文
共 50 条
  • [1] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhi-juan ZHANG
    Xi-jun YU
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 453 - 466
  • [2] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhang, Zhi-juan
    Yu, Xi-jun
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 453 - 466
  • [3] LOCAL DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS
    Zhang, Zhijuan
    Yu, Xijun
    Chang, Yanzhen
    [J]. ACTA MATHEMATICA SCIENTIA, 2017, 37 (05) : 1519 - 1535
  • [4] THE DISCONTINUOUS GALERKIN METHOD FOR SEMILINEAR PARABOLIC PROBLEMS
    ESTEP, D
    LARSSON, S
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (01): : 35 - 54
  • [5] TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD
    ERIKSSON, K
    JOHNSON, C
    THOMEE, V
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04): : 611 - 643
  • [6] A local discontinuous Galerkin method for nonlinear parabolic SPDEs
    Li, Yunzhang
    Shu, Chi-Wang
    Tang, Shanjian
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 : S187 - S223
  • [7] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402
  • [8] Discontinuous Galerkin immersed finite element methods for parabolic interface problems
    Yang, Qing
    Zhang, Xu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 127 - 139
  • [9] Local discontinuous Galerkin methods for parabolic interface problems with homogeneous and non-homogeneous jump conditions
    An, Na
    Yu, Xijun
    Huang, Chaobao
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2572 - 2598
  • [10] Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems
    Burman, Erik
    Stamm, Benjamin
    [J]. NUMERISCHE MATHEMATIK, 2010, 116 (02) : 213 - 241