LOCAL DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS

被引:3
|
作者
Zhang, Zhijuan [1 ]
Yu, Xijun [2 ]
Chang, Yanzhen [3 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
[3] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
elliptic interface problem; minimal dissipation; local discontinuous Galerkin method; error estimates; ELEMENT METHOD;
D O I
10.1016/S0252-9602(17)30088-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains. The interface may be arbitrary smooth curves. It is shown that the error estimates in L-2-norm for the solution and the flux are O(h(2)vertical bar logh vertical bar) and O(h vertical bar logh vertical bar(1/2)), respectively. In numerical experiments, the successive substitution iterative methods are used to solve the LDG schemes. Numerical results verify the efficiency and accuracy of the method.
引用
收藏
页码:1519 / 1535
页数:17
相关论文
共 50 条
  • [1] An Unfitted Discontinuous Galerkin Method for Elliptic Interface Problems
    Wang, Qiuliang
    Chen, Jinru
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [2] A Superconvergent Local Discontinuous Galerkin Method for Elliptic Problems
    Slimane Adjerid
    Mahboub Baccouch
    [J]. Journal of Scientific Computing, 2012, 52 : 113 - 152
  • [3] A Superconvergent Local Discontinuous Galerkin Method for Elliptic Problems
    Adjerid, Slimane
    Baccouch, Mahboub
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (01) : 113 - 152
  • [4] A discontinuous Galerkin method for elliptic interface problems with application to electroporation
    Guyomarc'h, Gregory
    Lee, Chang-Ock
    Jeon, Kiwan
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (10): : 991 - 1008
  • [5] Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Sabawi, Younis A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [6] A selective immersed discontinuous Galerkin method for elliptic interface problems
    He, Xiaoming
    Lin, Tao
    Lin, Yanping
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (07) : 983 - 1002
  • [7] AN UNFITTED DISCONTINUOUS GALERKIN METHOD APPLIED TO ELLIPTIC INTERFACE PROBLEMS
    Massjung, Ralf
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3134 - 3162
  • [8] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhi-juan ZHANG
    Xi-jun YU
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (02) : 453 - 466
  • [9] Local discontinuous Galerkin method for parabolic interface problems
    Zhi-juan Zhang
    Xi-jun Yu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 453 - 466
  • [10] Local Discontinuous Galerkin Method for Parabolic Interface Problems
    Zhang, Zhi-juan
    Yu, Xi-jun
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (02): : 453 - 466