Entanglement mean field theory: Lipkin–Meshkov–Glick Model

被引:0
|
作者
Aditi Sen(De)
Ujjwal Sen
机构
[1] Harish-Chandra Research Institute,
来源
关键词
Quantum information; Quantum many-body physics; Mean field theory; Entanglement mean field theory; Quantum spin models; Lipkin–Meshkov–Glick model;
D O I
暂无
中图分类号
学科分类号
摘要
Entanglement mean field theory is an approximate method for dealing with many-body systems, especially for the prediction of the onset of phase transitions. While previous studies have concentrated mainly on applications of the theory on short-range interaction models, we show here that it can be efficiently applied also to systems with long-range interaction Hamiltonians. We consider the (quantum) Lipkin–Meshkov–Glick spin model, and derive the entanglement mean field theory reduced Hamiltonian. A similar recipe can be applied to obtain entanglement mean field theory reduced Hamiltonians corresponding to other long-range interaction systems. We show, in particular, that the zero temperature quantum phase transition present in the Lipkin–Meshkov–Glick model can be accurately predicted by the theory.
引用
收藏
页码:675 / 683
页数:8
相关论文
共 50 条
  • [21] ON THE Q-ANALOG OF THE LIPKIN-MESHKOV-GLICK MODEL
    BABINEC, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1993, 43 (07) : 705 - 708
  • [22] SPECTRAL GAP OF THE ANTIFERROMAGNETIC LIPKIN-MESHKOV-GLICK MODEL
    Unanyan, R. G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 195 (02) : 718 - 728
  • [23] Single molecule magnets and the Lipkin-Meshkov-Glick model
    Campos, J. A.
    Hirsch, J. G.
    REVISTA MEXICANA DE FISICA, 2011, 57 (03) : 56 - 61
  • [24] Thermalization of the Lipkin-Meshkov-Glick model in blackbody radiation
    Macri, T.
    Ostilli, M.
    Presilla, C.
    PHYSICAL REVIEW A, 2017, 95 (04)
  • [25] Extended Lipkin-Meshkov-Glick Hamiltonian
    Romano, R.
    Roca-Maza, X.
    Colo, G.
    Shen, Shihang
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (05)
  • [26] Fotoc complexity in the Lipkin-Meshkov-Glick model and its variant
    Jaiswal, Nitesh
    Gautam, Mamta
    Gill, Ankit
    Sarkar, Tapobrata
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (01):
  • [27] A quasi-exactly solvable Lipkin-Meshkov-Glick model
    Pan, Feng
    Lin, Jijie
    Xue, Xiaogang
    Draayer, J. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (18)
  • [28] Circuit QED scheme for the realization of the Lipkin-Meshkov-Glick model
    Larson, J.
    EPL, 2010, 90 (05)
  • [29] Simulating the Lipkin-Meshkov-Glick model in a hybrid quantum system
    Zhou, Yuan
    Ma, Sheng-Li
    Li, Bo
    Li, Xiao-Xiao
    Li, Fu-Li
    Li, Peng-Bo
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [30] LIPKIN-MESHKOV-GLICK MODEL AND CRITICAL PHENOMENA IN ROTATING SPECTRA
    BRAUN, PA
    SMIRNOV, YF
    SHIROKOV, AM
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1987, 51 (01): : 176 - 181