SPECTRAL GAP OF THE ANTIFERROMAGNETIC LIPKIN-MESHKOV-GLICK MODEL

被引:1
|
作者
Unanyan, R. G. [1 ]
机构
[1] Kaiserslautern Univ Technol, Dept Phys, Kaiserslautern, Germany
关键词
integrable model; Lipkin-Meshkov-Glick model; many-body system; spectral gap; BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY;
D O I
10.1134/S0040577918050070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the spectral property of the supersymmetric (SUSY) antiferromagnetic Lipkin-Meshkov-Glick (LMG) model with an even number of spins and explicitly construct the supercharges of the model. Using the exact form of the SUSY ground state, we introduce simple trial variational states for the first excited states. We show numerically that they provide a relatively accurate upper bound for the spectral gap (the energy difference between the ground state and first excited states) in all parameter ranges, but because it is an upper bound, it does not allow rigorously determining whether the model is gapped or gapless. To answer this question, we obtain a nontrivial lower bound for the spectral gap and thus show that the antiferromagnetic SUSY LMG model is gapped for any even number of spins.
引用
收藏
页码:718 / 728
页数:11
相关论文
共 50 条
  • [1] Spectral Gap of the Antiferromagnetic Lipkin–Meshkov–Glick Model
    R. G. Unanyan
    [J]. Theoretical and Mathematical Physics, 2018, 195 : 718 - 728
  • [2] Complexity in the Lipkin-Meshkov-Glick model
    Pal, Kunal
    Pal, Kuntal
    Sarkar, Tapobrata
    [J]. PHYSICAL REVIEW E, 2023, 107 (04)
  • [3] Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
    Campbell, Steve
    De Chiara, Gabriele
    Paternostro, Mauro
    Palma, G. Massimo
    Fazio, Rosario
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [4] Multiparticle entanglement in the Lipkin-Meshkov-Glick model
    Cui, H. T.
    [J]. PHYSICAL REVIEW A, 2008, 77 (05):
  • [5] Universality of the negativity in the Lipkin-Meshkov-Glick model
    Wichterich, Hannu
    Vidal, Julien
    Bose, Sougato
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [6] Thermodynamical limit of the Lipkin-Meshkov-Glick model
    Ribeiro, Pedro
    Vidal, Julien
    Mosseri, Remy
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (05)
  • [7] On the exact solutions of the Lipkin-Meshkov-Glick model
    Debergh, N
    Stancu, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (15): : 3265 - 3276
  • [8] Thermal Entanglement in Lipkin-Meshkov-Glick Model
    Du Long
    Zhang Wen-Xin
    Ding Jia-Yan
    Wang Guo-Xiang
    Hou Jing-Min
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (01) : 61 - 66
  • [9] Multipartite nonlocality and global quantum discord in the antiferromagnetic Lipkin-Meshkov-Glick model
    Bao, Jia
    Guo, Bin
    Liu, Yan-Hong
    Shen, Long-Hui
    Sun, Zhao-Yu
    [J]. PHYSICA B-CONDENSED MATTER, 2020, 593
  • [10] Multipartite nonlocality in the Lipkin-Meshkov-Glick model
    Bao, Jia
    Guo, Bin
    Cheng, Hong-Guang
    Zhou, Mu
    Fu, Jin
    Deng, Yi-Chen
    Sun, Zhao-Yu
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)