Tits building;
Symplectic Grassmannians;
Base subsets;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let V and V′ be 2n-dimensional vector spaces over fields F and F′. Let also Ω: V× V→ F and Ω′: V′× V′→ F′ be non-degenerate symplectic forms. Denote by Π and Π′ the associated (2n−1)-dimensional projective spaces. The sets of k-dimensional totally isotropic subspaces of Π and Π′ will be denoted by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal G}_{k}$$\end{document} and ${\mathcal G}'_{k}$, respectively. Apartments of the associated buildings intersect \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal G}_{k}$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal G}'_{k}$$\end{document} by so-called base subsets. We show that every mapping of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal G}_{k}$$\end{document} to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal G}'_{k}$$\end{document} sending base subsets to base subsets is induced by a symplectic embedding of Π to Π′.
机构:
Inst for Basic Sci Korea, Ctr Complex Geometry, Daejeon 34126, South KoreaInst for Basic Sci Korea, Ctr Complex Geometry, Daejeon 34126, South Korea
Hwang, Jun-Muk
Li, Qifeng
论文数: 0引用数: 0
h-index: 0
机构:
Inst for Basic Sci Korea, Ctr Complex Geometry, Daejeon 34126, South KoreaInst for Basic Sci Korea, Ctr Complex Geometry, Daejeon 34126, South Korea