Rearrangement Estimates and Limiting Embeddings for Anisotropic Besov Spaces

被引:0
|
作者
V. I. Kolyada
机构
[1] Karlstad University,Department of Mathematics
来源
Analysis Mathematica | 2023年 / 49卷
关键词
rearrangement; Lorentz space; embedding; modulus of continuity; primary 46E30; secondary 46E35; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is dedicated to the study of embeddings of the anisotropic Besov spaces Bp,θ1,…,θnβ1,…,βn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{p,{\theta _1}, \ldots ,{\theta _n}}^{{\beta _1}, \ldots ,{\beta _n}}$$\end{document} (ℝn) into Lorentz spaces. We find the sharp asymptotic behaviour of embedding constants when some of the exponents βk tend to 1 (βk < 1). In particular, these results give an extension of the estimate proved by Bourgain, Brezis, and Mironescu for isotropic Besov spaces. Also, in the limit, we obtain a link with some known embeddings of anisotropic Lipschitz spaces.
引用
收藏
页码:1053 / 1071
页数:18
相关论文
共 50 条