Nonlinear wavelet approximation in anisotropic Besov spaces

被引:10
|
作者
Leisner, C [1 ]
机构
[1] Florida Atlantic Univ, Honors Coll, Jupiter, FL 33458 USA
关键词
wavelets; multiresolution; anisotropic; Besov spaces; B-splines; nonlinear approximation; interpolation spaces;
D O I
10.1512/iumj.2003.52.2224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given anisotropic: wavelet decompositions associated with the smoothness beta, beta = (beta(1), . . . , beta(d)), beta(1), . . . , beta(d) > 0 of multivariate functions as measured in anisotropic Besov spaces B-beta, we give the rate of nonlinear approximation with respect to the L-P-norm, 1 less than or equal to p < infinity, of functions f is an element of B-beta by these wavelets. We also prove that, among a general class of anisotropic wavelet decompositions of a function f is an element of B-beta the anisotropic wavelet decomposition associated with beta gives the optimal rate of compression of the wavelet decomposition of f.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 50 条