Application of wavelet bases in linear and nonlinear approximation to functions from Besov spaces

被引:0
|
作者
Burnaev E.V. [1 ]
机构
[1] Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, 141700
基金
俄罗斯基础研究基金会;
关键词
Besov spaces; Linear approximation; Nonlinear approximation; Wavelet basis;
D O I
10.1134/S0965542506120049
中图分类号
学科分类号
摘要
Linear and nonlinear approximations to functions from Besov spaces B p, q σ ([0, 1]), σ > 0, 1 ≤ p, q ≤ ∞ in a wavelet basis are considered. It is shown that an optimal linear approximation by a D-dimensional subspace of basis wavelet functions has an error of order D -min(σ, σ + 1/2 - 1/p) for all 1 ≤ p ≤ ∞ and σ > max(1/p - 1/2, 0). An original scheme is proposed for optimal nonlinear approximation. It is shown how a D-dimensional subspace of basis wavelet functions is to be chosen depending on the approximated function so that the error is on the order of D -σ for all 1 ≤ p ≤ ∞ and σ > max(1/p - 1/2, 0). The nonlinear approximation scheme proposed does not require any a priori information on the approximated function. © Nauka/Interperiodica 2006.
引用
收藏
页码:2051 / 2060
页数:9
相关论文
共 50 条