The Classification of Some Perfect Codes

被引:0
|
作者
Sergey V. Avgustinovich
Olof Heden
Faina I. Solov'eva
机构
[1] Sobolev Institute of Mathematics,Department of Mathematics
[2] KTH,undefined
来源
关键词
perfect codes;
D O I
暂无
中图分类号
学科分类号
摘要
Perfect 1-error correcting codes C in Z2n, where n=2m−1, are considered. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \left\langle C \right\rangle $$ \end{document}; denote the linear span of the words of C and let the rank of C be the dimension of the vector space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \left\langle C \right\rangle $$ \end{document}. It is shown that if the rank of C is n−m+2 then C is equivalent to a code given by a construction of Phelps. These codes are, in case of rank n−m+2, described by a Hamming code H and a set of MDS-codes Dh, h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \in $$ \end{document}H, over an alphabet with four symbols. The case of rank n−m+1 is much simpler: Any such code is a Vasil'ev code.
引用
收藏
页码:313 / 318
页数:5
相关论文
共 50 条
  • [1] The classification of some perfect codes
    Avgustinovich, SV
    Heden, O
    Solov'eva, FI
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2004, 31 (03) : 313 - 318
  • [2] SOME COMBINATORIAL APPLICATIONS OF PERFECT CODES
    SCHONHEI.J
    [J]. SIAM REVIEW, 1968, 10 (02) : 278 - &
  • [3] Perfect codes in some products of graphs
    Bakaein, Samane
    Tavakoli, Mostafa
    Rahbarnia, Freydoon
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (01) : 175 - 184
  • [4] On the classification of perfect codes: side class structures
    Olof Heden
    Martin Hessler
    [J]. Designs, Codes and Cryptography, 2006, 40 : 319 - 333
  • [5] On the classification of perfect codes: side class structures
    Heden, Olof
    Hessler, Martin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (03) : 319 - 333
  • [6] SOME QUASI-PERFECT CYCLIC CODES
    DORNSTETTER, JL
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1986, 228 : 122 - 129
  • [7] SOME ADDITIONAL QUASI-PERFECT CODES
    WAGNER, TJ
    [J]. INFORMATION AND CONTROL, 1967, 10 (03): : 334 - &
  • [8] On rank and kernel of some mixed perfect codes
    Pasticci, Fabio
    Westerback, Thomas
    [J]. DISCRETE MATHEMATICS, 2009, 309 (09) : 2763 - 2774
  • [9] On some perfect codes with respect to Lee metric
    Jain, S
    Nam, KB
    Lee, KS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 : 104 - 120
  • [10] Classification of perfect linear codes with crown poset structure
    Ahn, J
    Kim, HK
    Kim, JS
    Kim, M
    [J]. DISCRETE MATHEMATICS, 2003, 268 (1-3) : 21 - 30