On some perfect codes with respect to Lee metric

被引:16
|
作者
Jain, S
Nam, KB [1 ]
Lee, KS
机构
[1] Univ Wisconsin, Dept Math, Whitewater, WI 53190 USA
[2] Univ Delhi, Dept Math, Delhi 110007, India
[3] Korea Natl Univ Educ, Dept Math Educ, Choong Book 363791, Cheong Won, South Korea
关键词
Lee weight; linear codes; perfect codes;
D O I
10.1016/j.laa.2005.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain bounds on the number of parity check digits for Lee weight codes correcting errors of Lee weight 1, errors of Lee weight 2 or less, errors of Lee weight 3 or less and errors of Lee weight 4 or less over Z(q) (q >= 5, a prime) respectively. We also examine these bounds with equality to check for perfect codes and have shown the existence of perfect codes correcting errors of Lee weight 1 over Z(5) and perfect codes correcting errors of Lee weight 2 or less over Z(13). We have also shown the nonexistence of perfect codes correcting errors of Lee weight 2 or less over Z(q) when q = 4n + 3 (q prime) and correcting errors of Lee weight 3 or less and errors of Lee weight 4 or less over Z(q) (5 <= q <= 97, a prime). We further conjecture that there does not exist a perfect code correcting errors of Lee weight t or less (t >= 3) over Z(q) (q >= 5, a prime). (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:104 / 120
页数:17
相关论文
共 50 条