The Classification of Some Perfect Codes

被引:0
|
作者
Sergey V. Avgustinovich
Olof Heden
Faina I. Solov'eva
机构
[1] Sobolev Institute of Mathematics,Department of Mathematics
[2] KTH,undefined
来源
关键词
perfect codes;
D O I
暂无
中图分类号
学科分类号
摘要
Perfect 1-error correcting codes C in Z2n, where n=2m−1, are considered. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \left\langle C \right\rangle $$ \end{document}; denote the linear span of the words of C and let the rank of C be the dimension of the vector space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \left\langle C \right\rangle $$ \end{document}. It is shown that if the rank of C is n−m+2 then C is equivalent to a code given by a construction of Phelps. These codes are, in case of rank n−m+2, described by a Hamming code H and a set of MDS-codes Dh, h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \in $$ \end{document}H, over an alphabet with four symbols. The case of rank n−m+1 is much simpler: Any such code is a Vasil'ev code.
引用
收藏
页码:313 / 318
页数:5
相关论文
共 50 条
  • [21] On the reconstruction of perfect codes
    Heden, O
    [J]. DISCRETE MATHEMATICS, 2002, 256 (1-2) : 479 - 485
  • [22] ON PERFECT ARITHMETIC CODES
    LOBSTEIN, AC
    [J]. DISCRETE MATHEMATICS, 1992, 106 : 333 - 336
  • [23] On perfect binary codes
    Solov'eva, Faina I.
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (09) : 1488 - 1498
  • [24] On Lifting Perfect Codes
    Rifa, Josep
    Zinoviev, Victor A.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 5918 - 5925
  • [25] On perfect Lee codes
    Horak, P.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (18) : 5551 - 5561
  • [26] Nonsystematic perfect codes
    Phelps, KT
    Levan, M
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 27 - 34
  • [27] Designs and perfect codes
    Solov'eva, F. I.
    [J]. General Theory of Information Transfer and Combinatorics, 2006, 4123 : 1104 - 1105
  • [28] On kernels of perfect codes
    Heden, Olof
    [J]. DISCRETE MATHEMATICS, 2010, 310 (21) : 3052 - 3055
  • [29] ON PERFECT POSET CODES
    Panek, Luciano
    Pinheiro, Jerry Anderson
    Alves, Marcelo Muniz
    Firer, Marcelo
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (03) : 477 - 489
  • [30] On perfect integer codes
    Tamm, U
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 117 - 120