One Diophantine inequality with unlike powers of prime variables

被引:0
|
作者
Wenxu Ge
Weiping Li
机构
[1] North China University of Water Resources and Electric Power,Department of Mathematics and Information Sciences
[2] Henan University of Economics and Law,Department of Mathematics and Information Science
关键词
Davenport-Heilbronn method; prime; Diophantine approximation; 11D75; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that if λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}$\end{document}, λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{2}$\end{document}, λ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{3}$\end{document}, λ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{4}$\end{document}, λ5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{5}$\end{document} are nonzero real numbers not all of the same sign, η is real, 0<σ<1720\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\sigma<\frac{1}{720}$\end{document}, and at least one of the ratios λi/λj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{i}/\lambda_{j}$\end{document} (1≤i<j≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq i< j\leq5$\end{document}) is irrational, then the inequality |λ1p1+λ2p22+λ3p33+λ4p44+λ5p55+η|<(max1≤j≤5pjj)−σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\lambda_{1}p_{1}+\lambda_{2}p_{2}^{2}+\lambda_{3}p_{3}^{3}+\lambda_{4}p_{4}^{4}+\lambda _{5}p_{5}^{5}+\eta|<(\max_{ 1\leq j\leq5}{p_{j}^{j}})^{-\sigma}$\end{document} has infinite solutions with primes p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{1}$\end{document}, p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{2}$\end{document}, p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{3}$\end{document}, p4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{4}$\end{document}, p5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{5}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] One Diophantine inequality with unlike powers of prime variables
    Mu, Quanwu
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (06) : 1531 - 1545
  • [2] One Diophantine inequality with unlike powers of prime variables
    Ge, Wenxu
    Li, Weiping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 8
  • [3] The exceptional set for Diophantine inequality with unlike powers of prime variables
    Ge, Wenxu
    Zhao, Feng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (01) : 149 - 168
  • [4] The exceptional set for Diophantine inequality with unlike powers of prime variables
    Wenxu Ge
    Feng Zhao
    Czechoslovak Mathematical Journal, 2018, 68 : 149 - 168
  • [5] Diophantine Inequality by Unlike Powers of Primes
    ZHU, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (01) : 125 - 136
  • [6] Diophantine inequality by unlike powers of primes
    Zhu, Li
    RAMANUJAN JOURNAL, 2020, 51 (02): : 307 - 318
  • [7] Diophantine Inequality by Unlike Powers of Primes
    Li Zhu
    Chinese Annals of Mathematics, Series B, 2022, 43 : 125 - 136
  • [8] Diophantine Inequality by Unlike Powers of Primes
    Li ZHU
    Chinese Annals of Mathematics,Series B, 2022, (01) : 125 - 136
  • [9] Diophantine inequality by unlike powers of primes
    Li Zhu
    The Ramanujan Journal, 2020, 51 : 307 - 318
  • [10] One Diophantine inequality with integer and prime variables
    Yongqiang Yang
    Weiping Li
    Journal of Inequalities and Applications, 2015