One Diophantine inequality with unlike powers of prime variables

被引:0
|
作者
Wenxu Ge
Weiping Li
机构
[1] North China University of Water Resources and Electric Power,Department of Mathematics and Information Sciences
[2] Henan University of Economics and Law,Department of Mathematics and Information Science
关键词
Davenport-Heilbronn method; prime; Diophantine approximation; 11D75; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that if λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}$\end{document}, λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{2}$\end{document}, λ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{3}$\end{document}, λ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{4}$\end{document}, λ5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{5}$\end{document} are nonzero real numbers not all of the same sign, η is real, 0<σ<1720\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\sigma<\frac{1}{720}$\end{document}, and at least one of the ratios λi/λj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{i}/\lambda_{j}$\end{document} (1≤i<j≤5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\leq i< j\leq5$\end{document}) is irrational, then the inequality |λ1p1+λ2p22+λ3p33+λ4p44+λ5p55+η|<(max1≤j≤5pjj)−σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|\lambda_{1}p_{1}+\lambda_{2}p_{2}^{2}+\lambda_{3}p_{3}^{3}+\lambda_{4}p_{4}^{4}+\lambda _{5}p_{5}^{5}+\eta|<(\max_{ 1\leq j\leq5}{p_{j}^{j}})^{-\sigma}$\end{document} has infinite solutions with primes p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{1}$\end{document}, p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{2}$\end{document}, p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{3}$\end{document}, p4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{4}$\end{document}, p5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_{5}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Diophantine approximation with prime variables and mixed powers
    Yunyun Qu
    Jiwen Zeng
    The Ramanujan Journal, 2020, 52 : 625 - 639
  • [22] Diophantine approximation with prime variables and mixed powers
    Qu, Yunyun
    Zeng, Jiwen
    RAMANUJAN JOURNAL, 2020, 52 (03): : 625 - 639
  • [23] Diophantine approximation with prime variables and mixed powers
    Li, Boyang
    Wang, Yuchao
    RAMANUJAN JOURNAL, 2023, 60 (02): : 371 - 389
  • [24] A note on Diophantine approximation with prime variables and mixed powers
    Liu, Huafeng
    RAMANUJAN JOURNAL, 2021, 56 (01): : 249 - 263
  • [25] A note on Diophantine approximation with prime variables and mixed powers
    Huafeng Liu
    The Ramanujan Journal, 2021, 56 : 249 - 263
  • [26] Diophantine approximation by unlike powers of primes
    Liu, Zhixin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2445 - 2452
  • [27] On Diophantine approximation by unlike powers of primes
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    OPEN MATHEMATICS, 2019, 17 : 544 - 555
  • [28] A Diophantine Problem with Unlike Powers of Primes
    Mu, Quanwu
    Xi, Liyan
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [29] Results of Diophantine approximation by unlike powers of primes
    Gaiyun Gao
    Zhixin Liu
    Frontiers of Mathematics in China, 2018, 13 : 797 - 808
  • [30] Results of Diophantine approximation by unlike powers of primes
    Gao, Gaiyun
    Liu, Zhixin
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (04) : 797 - 808