Teichmüller theory of the punctured solenoid

被引:0
|
作者
R. C. Penner
Dragomir Šarić
机构
[1] University of Southern California,Departments of Mathematics and Physics/Astronomy
[2] Stony Brook University,Institute for Mathematical Sciences
[3] Queens College of CUNY,Department of Mathematics
来源
Geometriae Dedicata | 2008年 / 132卷
关键词
Teichmüller space; Solenoid; Mapping class group; 30F60; 32G15; 57M99; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
The punctured solenoid \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document} plays the role of an initial object for the category of punctured surfaces with morphisms given by finite covers branched only over the punctures. The (decorated) Teichmüller space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document} is introduced, studied, and found to be parametrized by certain coordinates on a fixed triangulation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document}. Furthermore, a point in the decorated Teichmüller space induces a polygonal decomposition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document} itself giving a combinatorial description of the decorated Teichmüller space. This is used to obtain a non-trivial set of generators of the modular group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document}, and each word in these generators admits a normal form. There is furthermore a non-degenerate modular group invariant two form on the Teichmüller space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal H}$$\end{document}. All of this structure is in perfect analogy with that of the decorated Teichmüller space of a punctured surface of finite type.
引用
收藏
页码:179 / 212
页数:33
相关论文
共 50 条
  • [1] Pressure metrics and Manhattan curves for Teichmüller spaces of punctured surfaces
    Lien-Yung Kao
    [J]. Israel Journal of Mathematics, 2020, 240 : 567 - 602
  • [2] Historical development of Teichmüller theory
    Lizhen Ji
    Athanase Papadopoulos
    [J]. Archive for History of Exact Sciences, 2013, 67 : 119 - 147
  • [3] Koebe Problems and Teichmüller Theory
    Jin Song Liu
    [J]. Acta Mathematica Sinica, 2006, 22 : 959 - 962
  • [4] Quantisation of Super Teichmüller Theory
    Nezhla Aghaei
    Michal Pawelkiewicz
    Jörg Teschner
    [J]. Communications in Mathematical Physics, 2017, 353 : 597 - 631
  • [5] Teichmuller theory of the punctured solenoid
    Penner, R. C.
    Saric, Dragomir
    [J]. GEOMETRIAE DEDICATA, 2008, 132 (01) : 179 - 212
  • [6] Toy Teichmüller spaces of real dimension 2: the pentagon and the punctured triangle
    Yudong Chen
    Roman Chernov
    Marco Flores
    Maxime Fortier Bourque
    Seewoo Lee
    Bowen Yang
    [J]. Geometriae Dedicata, 2018, 197 : 193 - 227
  • [7] Teichmüller theory and collapse of flat manifolds
    Renato G. Bettiol
    Andrzej Derdzinski
    Paolo Piccione
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1247 - 1268
  • [8] Zeta functions in higher Teichmüller theory
    Mark Pollicott
    Richard Sharp
    [J]. Mathematische Zeitschrift, 2024, 306
  • [9] A TQFT from Quantum Teichmüller Theory
    Jørgen Ellegaard Andersen
    Rinat Kashaev
    [J]. Communications in Mathematical Physics, 2014, 330 : 887 - 934
  • [10] Zeta functions in higher Teichmüller theory
    Pollicott, Mark
    Sharp, Richard
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)