Pressure metrics and Manhattan curves for Teichmüller spaces of punctured surfaces

被引:0
|
作者
Lien-Yung Kao
机构
[1] The University of Chicago,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the construction of pressure metrics to Teichmüller spaces of surfaces with punctures. This construction recovers Thurston’s Riemannian metric on Teichmüller spaces. Moreover, we prove the real analyticity and convexity of Manhattan curves of finite area type-preserving Fuchsian representations, and thus we obtain several related entropy rigidity results. Lastly, relating the two topics mentioned above, we show that one can derive the pressure metric by varying Manhattan curves.
引用
收藏
页码:567 / 602
页数:35
相关论文
共 50 条
  • [1] Pressure metrics and Manhattan curves for Teichmuller spaces of punctured surfaces
    Kao, Lien-Yung
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 240 (02) : 567 - 602
  • [2] Teichmüller theory of the punctured solenoid
    R. C. Penner
    Dragomir Šarić
    [J]. Geometriae Dedicata, 2008, 132 : 179 - 212
  • [3] On local comparison between various metrics on Teichmüller spaces
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    [J]. Geometriae Dedicata, 2012, 157 : 91 - 110
  • [4] Toy Teichmüller spaces of real dimension 2: the pentagon and the punctured triangle
    Yudong Chen
    Roman Chernov
    Marco Flores
    Maxime Fortier Bourque
    Seewoo Lee
    Bowen Yang
    [J]. Geometriae Dedicata, 2018, 197 : 193 - 227
  • [5] Teichmüller Spaces and Function Spaces
    郭辉
    [J]. 数学进展, 1998, (01) : 83 - 84
  • [6] On angles in Teichmüller spaces
    Yun Hu
    Yuliang Shen
    [J]. Mathematische Zeitschrift, 2014, 277 : 181 - 193
  • [7] Comparisons of metrics on Teichmüller space
    Zongliang Sun
    Lixin Liu
    [J]. Chinese Annals of Mathematics, Series B, 2010, 31 : 71 - 84
  • [8] Symplectic Geometry of Teichmüller Spaces for Surfaces with Ideal Boundary
    Alekseev, Anton
    Meinrenken, Eckhard
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (10)
  • [9] Morphisms between the moduli spaces of curves with generalized Teichmüller structure
    Jan Mayer
    [J]. manuscripta mathematica, 2002, 107 : 229 - 249
  • [10] Integrable Teichmüller spaces
    郭辉
    [J]. Science China Mathematics, 2000, (01) : 47 - 58