Teichmuller theory of the punctured solenoid

被引:13
|
作者
Penner, R. C. [1 ,2 ]
Saric, Dragomir [3 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Phys Astron, Los Angeles, CA 90089 USA
[3] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Teichmuller space; solenoid; mapping class group;
D O I
10.1007/s10711-007-9226-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The punctured solenoid H plays the role of an initial object for the category of punctured surfaces with morphisms given by finite covers branched only over the punctures. The (decorated) Teichmuller space of H is introduced, studied, and found to be parametrized by certain coordinates on a fixed triangulation of H. Furthermore, a point in the decorated Teichmuller space induces a polygonal decomposition of H itself giving a combinatorial description of the decorated Teichmuller space. This is used to obtain a non-trivial set of generators of the modular group of H, and each word in these generators admits a normal form. There is furthermore a non-degenerate modular group invariant two form on the Teichmuller space of H. All of this structure is in perfect analogy with that of the decorated Teichmuller space of a punctured surface of finite type.
引用
收藏
页码:179 / 212
页数:34
相关论文
共 50 条