机构:
Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
Univ So Calif, Dept Phys Astron, Los Angeles, CA 90089 USAUniv So Calif, Dept Math, Los Angeles, CA 90089 USA
Penner, R. C.
[1
,2
]
Saric, Dragomir
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USAUniv So Calif, Dept Math, Los Angeles, CA 90089 USA
Saric, Dragomir
[3
]
机构:
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Phys Astron, Los Angeles, CA 90089 USA
[3] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
The punctured solenoid H plays the role of an initial object for the category of punctured surfaces with morphisms given by finite covers branched only over the punctures. The (decorated) Teichmuller space of H is introduced, studied, and found to be parametrized by certain coordinates on a fixed triangulation of H. Furthermore, a point in the decorated Teichmuller space induces a polygonal decomposition of H itself giving a combinatorial description of the decorated Teichmuller space. This is used to obtain a non-trivial set of generators of the modular group of H, and each word in these generators admits a normal form. There is furthermore a non-degenerate modular group invariant two form on the Teichmuller space of H. All of this structure is in perfect analogy with that of the decorated Teichmuller space of a punctured surface of finite type.
机构:
Ecole Normale Super, UMR CNRS 8553, DMA, 45 Rue Ulm, F-75230 Paris 05, FranceEcole Normale Super, UMR CNRS 8553, DMA, 45 Rue Ulm, F-75230 Paris 05, France
Guillarmou, Colin
Moroianu, Sergiu
论文数: 0引用数: 0
h-index: 0
机构:
Acad Romane, Inst Matemat, POB 1-764, RO-014700 Bucharest, RomaniaEcole Normale Super, UMR CNRS 8553, DMA, 45 Rue Ulm, F-75230 Paris 05, France
Moroianu, Sergiu
Rochon, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Quebec Montreal, Dept Math, Montreal, PQ, CanadaEcole Normale Super, UMR CNRS 8553, DMA, 45 Rue Ulm, F-75230 Paris 05, France