Teichmuller theory of the punctured solenoid

被引:13
|
作者
Penner, R. C. [1 ,2 ]
Saric, Dragomir [3 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ So Calif, Dept Phys Astron, Los Angeles, CA 90089 USA
[3] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Teichmuller space; solenoid; mapping class group;
D O I
10.1007/s10711-007-9226-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The punctured solenoid H plays the role of an initial object for the category of punctured surfaces with morphisms given by finite covers branched only over the punctures. The (decorated) Teichmuller space of H is introduced, studied, and found to be parametrized by certain coordinates on a fixed triangulation of H. Furthermore, a point in the decorated Teichmuller space induces a polygonal decomposition of H itself giving a combinatorial description of the decorated Teichmuller space. This is used to obtain a non-trivial set of generators of the modular group of H, and each word in these generators admits a normal form. There is furthermore a non-degenerate modular group invariant two form on the Teichmuller space of H. All of this structure is in perfect analogy with that of the decorated Teichmuller space of a punctured surface of finite type.
引用
收藏
页码:179 / 212
页数:34
相关论文
共 50 条
  • [31] Quantisation of Super Teichmuller Theory
    Aghaei, Nezhla
    Pawelkiewicz, Michal
    Teschner, Jorg
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (02) : 597 - 631
  • [32] Teichmuller Theory of Bordered Surfaces
    Chekhov, Leonid O.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [33] TEICHMULLER THEORY OF THE UNIVERSAL HYPERBOLIC LAMINATION
    Manuel Burgos, Juan
    Verjovsky, Alberto
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 577 - 599
  • [34] A TQFT from Quantum Teichmuller Theory
    Andersen, Jorgen Ellegaard
    Kashaev, Rinat
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 887 - 934
  • [35] A CLASSICAL VARIATIONAL APPROACH TO TEICHMULLER THEORY
    TROMBA, AJ
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1365 : 155 - 185
  • [36] SOME RECENT RESULTS IN TEICHMULLER THEORY
    EARLE, CJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A370 - A370
  • [37] Zero Rotation Spectrum and Teichmuller Theory
    Kim, Sang-hyun
    Koberda, Thomas
    Mj, Mahan
    [J]. FLEXIBILITY OF GROUP ACTIONS ON THE CIRCLE, 2019, 2231 : 97 - 114
  • [38] TEICHMULLER-SPACES OF STRING THEORY
    BUGAJSKA, K
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (08) : 1329 - 1362
  • [39] Teichmuller theory and critically finite endomorphisms
    Koch, Sarah
    [J]. ADVANCES IN MATHEMATICS, 2013, 248 : 573 - 617
  • [40] Intersection theory of punctured pseudoholomorphic curves
    Siefring, Richard
    [J]. GEOMETRY & TOPOLOGY, 2011, 15 (04) : 2351 - 2457