A weighted Erdős–Ginzburg–Ziv constant for finite abelian groups with higher rank

被引:0
|
作者
Mohan Chintamani
Prabal Paul
机构
[1] University of Hyderabad,School of Mathematics and Statistics
[2] BITS Pilani,Department of Mathematics
来源
关键词
Zero-sum problems; weighted Erdős–Ginzburg–Ziv constants; 11B50; 11P70;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite abelian group and A⊂Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \mathbb Z$$\end{document}. The weighted zero-sum constant sA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_A(G)$$\end{document} (resp. ηA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _A(G)$$\end{document}) is defined as the least positive integer t, such that every sequence S over G with length ≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge t$$\end{document} has an A-weighted zero-sum subsequence of length exp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{exp}(G)$$\end{document} (resp. ≤exp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le \!\!\exp (G)$$\end{document}). In this article, we investigate the value of sA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_A(G)$$\end{document} and ηA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _A(G)$$\end{document} in the case G=Zn⊕Zn⊕⋯⊕Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb Z_n\oplus \mathbb Z_n\oplus \cdots \oplus \mathbb Z_n$$\end{document}, where n is a square-free odd integer and A is the set of integers co-prime to n. We also obtain certain properties about extremal zero-sum free sequences.
引用
收藏
相关论文
共 50 条
  • [1] A weighted Erdos-Ginzburg-Ziv constant for finite abelian groups with higher rank
    Chintamani, Mohan
    Paul, Prabal
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [2] On the Erdos-Ginzburg-Ziv constant of finite abelian groups of high rank
    Fan, Yushuang
    Gao, Weidong
    Zhong, Qinghai
    [J]. JOURNAL OF NUMBER THEORY, 2011, 131 (10) : 1864 - 1874
  • [3] The Erdős–Ginzburg–Ziv theorem for finite nilpotent groups
    Dongchun Han
    [J]. Archiv der Mathematik, 2015, 104 : 325 - 332
  • [4] A Weighted Erdős-Ginzburg-Ziv Theorem
    David J. Grynkiewicz
    [J]. Combinatorica, 2006, 26 : 445 - 453
  • [5] On Modified Erdo?s-Ginzburg-Ziv constants of finite abelian groups
    Hu, Yuting
    Peng, Jiangtao
    Wang, Mingrui
    [J]. AIMS MATHEMATICS, 2023, 8 (03): : 6697 - 6704
  • [6] Erdős-Ginzburg-Ziv theorem for finite commutative semigroups
    Sukumar Das Adhikari
    Weidong Gao
    Guoqing Wang
    [J]. Semigroup Forum, 2014, 88 : 555 - 568
  • [7] On Davenport's constant of finite abelian groups with rank three
    Gao, W
    [J]. DISCRETE MATHEMATICS, 2000, 222 (1-3) : 111 - 124
  • [8] On Davenport's constant of finite abelian groups with rank three
    Gao, W.
    [J]. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 1999, 17 (03): : 111 - 124
  • [9] On Erdős-Ginzburg-ZIV inverse theorems for dihedral and dicyclic groups
    Jun Seok Oh
    Qinghai Zhong
    [J]. Israel Journal of Mathematics, 2020, 238 : 715 - 743
  • [10] NOTE ON THE DAVENPORT CONSTANT FOR FINITE ABELIAN GROUPS WITH RANK THREE
    Zakarczemny, M.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2021, 90 (01): : 1 - 6