A weighted Erdős–Ginzburg–Ziv constant for finite abelian groups with higher rank

被引:0
|
作者
Mohan Chintamani
Prabal Paul
机构
[1] University of Hyderabad,School of Mathematics and Statistics
[2] BITS Pilani,Department of Mathematics
来源
关键词
Zero-sum problems; weighted Erdős–Ginzburg–Ziv constants; 11B50; 11P70;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite abelian group and A⊂Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \mathbb Z$$\end{document}. The weighted zero-sum constant sA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_A(G)$$\end{document} (resp. ηA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _A(G)$$\end{document}) is defined as the least positive integer t, such that every sequence S over G with length ≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge t$$\end{document} has an A-weighted zero-sum subsequence of length exp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{exp}(G)$$\end{document} (resp. ≤exp(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le \!\!\exp (G)$$\end{document}). In this article, we investigate the value of sA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_A(G)$$\end{document} and ηA(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _A(G)$$\end{document} in the case G=Zn⊕Zn⊕⋯⊕Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=\mathbb Z_n\oplus \mathbb Z_n\oplus \cdots \oplus \mathbb Z_n$$\end{document}, where n is a square-free odd integer and A is the set of integers co-prime to n. We also obtain certain properties about extremal zero-sum free sequences.
引用
下载
收藏
相关论文
共 50 条